Autoimmune Cytopenias in Chronic Lymphocytic Leukemia: Focus on Molecular Aspects

Bruno Fattizzo, Wilma Barcellini, Bruno Fattizzo, Wilma Barcellini

Abstract

Autoimmune cytopenias, particularly autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP), complicate up to 25% of chronic lymphocytic leukemia (CLL) cases. Their occurrence correlates with a more aggressive disease with unmutated VHIG status and unfavorable cytogenetics (17p and 11q deletions). CLL lymphocytes are thought to be responsible of a number of pathogenic mechanisms, including aberrant antigen presentation and cytokine production. Moreover, pathogenic B-cell lymphocytes may induce T-cell subsets imbalance that favors the emergence of autoreactive B-cells producing anti-red blood cells and anti-platelets autoantibodies. In the last 15 years, molecular insights into the pathogenesis of both primary and secondary AIHA/ITP has shown that autoreactive B-cells often display stereotyped B-cell receptor and that the autoantibodies themselves have restricted phenotypes. Moreover, a skewed T-cell repertoire and clonal T cells (mainly CD8+) may be present. In addition, an imbalance of T regulatory-/T helper 17-cells ratio has been involved in AIHA and ITP development, and correlates with various cytokine genes polymorphisms. Finally, altered miRNA and lnRNA profiles have been found in autoimmune cytopenias and seem to correlate with disease phase. Genomic studies are limited in these forms, except for recurrent mutations of KMT2D and CARD11 in cold agglutinin disease, which is considered a clonal B-cell lymphoproliferative disorder resulting in AIHA. In this manuscript, we review the most recent literature on AIHA and ITP secondary to CLL, focusing on available molecular evidences of pathogenic, clinical, and prognostic relevance.

Keywords: Evans' syndrome; autoimmune hemolytic anemia; chronic lymphocytic leukemia; immune thrombocytopenia; molecular.

Copyright © 2020 Fattizzo and Barcellini.

Figures

Figure 1
Figure 1
Autoimmune cytopenias (AIC) in chronic lymphocytic leukemia (CLL): the heterogeneity of onset imposes different management in each context.
Figure 2
Figure 2
The changing border between primary and secondary autoimmune cytopenias (AIC). Immune dysregulation is more profound in AIC secondary to systemic autoimmune diseases and immune deficiencies, than in AIC secondary to infections. Likewise, a higher burden of somatic mutations is more typical of bone marrow failures (BMF) and lymphoproliferative disorders (chronic lymphocytic leukemia, CLL; non-Hodgkin lymphomas, NHL), than in cold agglutinin disease (CAD) and syndrome (CAS). The increasing availability of genomic testing will improve the diagnostic sensitivity, moving upward the border between primary and secondary AIC.

References

    1. Visco C, Barcellini W, Maura F, Neri A, Cortelezzi A, Rodeghiero F. Autoimmune cytopenias in chronic lymphocytic leukemia. Am J Hematol. (2014) 89:1055–62. 10.1002/ajh.23785
    1. Hamblin TJ, Oscier DG, Young BJ. Autoimmunity in chronic lymphocytic leukaemia. J Clin Pathol. (1986) 39:713–6. 10.1136/jcp.39.7.713
    1. Beaume A, Brizard A, Dreyfus B, Preud'homme JL. High incidence of serum monoclonal Igs detected by a sensitive immunoblotting technique in B-cell chronic lymphocytic leukemia. Blood. (1994) 84:1216–9. 10.1182/blood.V84.4.1216.1216
    1. Broker BM, Klajman A, Youinou P, Jouquan J, Worman CP, Murphy J, et al. . Chronic lymphocytic leukemic (CLL) cells secrete multispecific autoantibodies. J Autoimmun. (1998) 1:469–81. 10.1016/0896-8411(88)90068-6
    1. Stevenson FK, Hamblin TJ, Stevenson GT, Tutt AL. Extracellular idiotypic immunoglobulin arising from human leukemic B lymphocytes. J Exp Med. (1980) 152:1484–96. 10.1084/jem.152.6.1484
    1. Diehl LF, Ketchum LH. Autoimmune disease and chronic lymphocytic leukemia: autoimmune hemolytic anemia, pure red cell aplasia, and autoimmune thrombocytopenia. Semin Oncol. (1998) 25:80–97.
    1. Hodgson K, Ferrer G, Pereira A, Moreno C, Montserrat E. Autoimmune cytopenia in chronic lymphocytic leukaemia: diagnosis and treatment. Br J Haematol. (2011) 154:14–22. 10.1111/j.1365-2141.2011.08707.x
    1. Galletti J, Canones C, Morande P, Borge M, Oppezzo P, Geffner J, et al. . Chronic lymphocytic leukemia cells bind and present the erythrocyte protein band 3: possible role as initiators of autoimmune hemolytic anemia. J Immunol. (2008) 181:3674–83. 10.4049/jimmunol.181.5.3674
    1. Hall AM, Vickers MA, McLeod E, Barker RN. Rh autoantigen presentation to helper T cells in chronic lymphocytic leukemia by malignant B cells. Blood. (2005) 105:2007–15. 10.1182/blood-2003-10-3563
    1. Strati P, Caligaris-Cappio F. A matter of debate in chronic lymphocytic leukemia: is the occurrence of autoimmune disorders an indicator of chronic lymphocytic leukemia therapy? Curr Opin Oncol. (2011) 23:455–60. 10.1097/CCO.0b013e328348c683
    1. Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. (2005) 115:1797–805. 10.1172/JCI24176
    1. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E, et al. . Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. (2005) 106:2018–25. 10.1182/blood-2005-02-0642
    1. Ward FJ, Hall AM, Cairns LS, Leggat AS, Urbaniak SJ, Vickers MA, et al. . Clonal regulatory T cells specific for a red blood cell autoantigen in human autoimmune hemolytic anemia. Blood. (2008) 111:680–7. 10.1182/blood-2007-07-101345
    1. Wright GP, Ehrenstein MR, Stauss HJ. Regulatory T-cell adoptive immunotherapy: Potential for treatment of autoimmunity. Expert Rev Clin Immunol. (2011) 7:213–25. 10.1586/eci.10.96
    1. Lad D, Varma S, Varma N, Sachdeva MU, Bose P, Malhotra P. Regulatory T-cell and T-helper 17 balance in chronic lymphocytic leukemia progression and autoimmune cytopenias. Leuk Lymphoma. (2015) 56:2424–8. 10.3109/10428194.2014.986479
    1. Grandjenette C, Kennel A, Faure GC, Béné MC, Feugier P. Expression of functional toll-like receptors by B-chronic lymphocytic leukemia cells. Haematologica. (2007) 92:1279–81. 10.3324/haematol.10975
    1. Muzio M, Bertilaccio MT, Simonetti G, Frenquelli M, Caligaris-Cappio F. The role of toll-like receptors in chronic B-cell malignancies. Leuk Lymphoma. (2009) 50:1573–80. 10.1080/10428190903115410
    1. Barcellini W, Imperiali FG, Zaninoni A, Reda G, Consonni D, Fattizzo B, et al. . Toll-like receptor 4 and 9 expression in B-chronic lymphocytic leukemia: relationship with infections, autoimmunity and disease progression. Leuk Lymphoma. (2014) 55:1768–73. 10.3109/10428194.2013.856426
    1. Weiss R, Freiman J, Kweder SL, Diehl LF, Byrd JC. Haemolytic anaemia after fludarabine therapy for chronic lymphocytic leukemia. J Clin Oncol. (1998) 16:1885–9. 10.1200/JCO.1998.16.5.1885
    1. Gonazalez H, Leblond V, Azar N, Sutton L, Gabarre J, Binet JL, et al. Severe autoimmune haemolytic anaemia in eight patients treated with fludarabine. Hematol Cell Ther. (1998) 40:113–8.
    1. Molica S, Polliack A. Autoimmune hemolytic anemia (AIHA) associated with chronic lymphocytic leukemia in the current era of targeted therapy. Leuk Res. (2016) 50:31–6. 10.1016/j.leukres.2016.09.002
    1. Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. . Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. (2016) 127:208–15. 10.1182/blood-2015-06-651125
    1. Tsang M, Chaffee KR, Call TG, Ding W, Leis J, Chanan-Khan A, et al. Pure red cell aplasia (PRCA) in chronic lymphocytic leukemia (CLL): etiology, therapy, and outcomes. Blood. (2015) 126:4169 10.1182/blood.V126.23.4169.4169
    1. Reda G, Maura F, Gritti G, Gregorini A, Binda F, Guidotti F, et al. . Low-dose alemtuzumab-associated immune thrombocytopenia in chronic lymphocytic leukemia. Am J Hematol. (2012) 87:936–7. 10.1002/ajh.23268
    1. Montillo M, O'Brien S, Tedeschi A, Byrd JC, Dearden C, Gill D, et al. . Ibrutinib in previously treated chronic lymphocytic leukemia patients with autoimmune cytopenias in the RESONATE study. Blood Cancer J. (2017) 7:e524. 10.1038/bcj.2017.5
    1. Vitale C, Ahn IE, Sivina M, Ferrajoli A, Wierda WG, Estrov Z, et al. Autoimmune cytopenias in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica. (2016) 102:e254–8. 10.3324/haematol.2015.138289
    1. Rogers K, Ruppert AS, Bingman A, Andritsos LA, Awan FT, Blum KA, et al. . Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia autoimmune cytopenias during ibrutinib treatment. Leukemia. (2016) 30:346–50. 10.1038/leu.2015.273
    1. Hampel PJ, Larson MC, Kabat B, Call TG, Ding W, Kenderian SS. Autoimmune cytopenias in patients with chronic lymphocytic leukaemia treated with ibrutinib in routine clinical practice at an academic medical centre. Br J Haematol. (2018) 183:421–7. 10.1111/bjh.15545
    1. Jaglowski SM, Blazar BR. How ibrutinib, a B-cell malignancy drug, became an FDA-approved second-line therapy for steroid-resistant chronic GVHD. Blood Adv. (2018) 2:2012–9. 10.1182/bloodadvances.2018013060
    1. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. (2016) 17:768–78. 10.1016/S1470-2045(16)30019-5
    1. Lampson B, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids M, et al. . Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. (2016) 128:195–203. 10.1182/blood-2016-03-707133
    1. Furman R, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. . Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. (2014) 370:997–1007. 10.1056/NEJMoa1315226
    1. Tsang M, Parikh SA. A concise review of autoimmune cytopenias in chronic lymphocytic leukemia. Curr Hematol Malig Rep. (2017) 12:29–38. 10.1007/s11899-017-0366-1
    1. Barcellini W, Montesano R, Clerici G, Zaninoni A, Imperiali FG, Calori R, et al. . In vitro production of anti-RBC antibodies and cytokines in chronic lymphocytic leukemia. Am J Hematol. (2002) 71:177–83. 10.1002/ajh.10210
    1. Quinquenel A, Al Nawakil C, Baran-Marszak F, Eclache V, Letestu R, Khalloufi M, et al. . Old DAT and new data: positive direct antiglobulin test identifies a subgroup with poor outcome among chronic lymphocytic leukemia stage A patients. Am J Hematol. (2015) 90:E5–8. 10.1002/ajh.23861
    1. Mauro F, Foa R, Cerretti R, Giannarelli D, Coluzzi S, Mandelli F, et al. . Autoimmune hemolytic anemia in chronic lymphocytic leukemia: clinical, therapeutic, and prognostic features. Blood. (2000) 95:2786–92. 10.1182/blood.V95.9.2786.009k30_2786_2792
    1. Rogers K, Woyach JA. Secondary autoimmune cytopenias in chronic lymphocytic leukemia. Semin Oncol. (2016) 43:300–10. 10.1053/j.seminoncol.2016.02.011
    1. Narat S, Gandla J, Hoffbrand AV, Hughes RG, Mehta AB. Rituximab in the treatment of refractory autoimmune cytopenias in adults. Haematologica. (2005) 90:1273–4.
    1. D'Arena G, Laurenti L, Capalbo S, D'Arco AM, De Filippi R, Marcacci G, et al. . Rituximab therapy for chronic lymphocytic leukemia-associated autoimmune hemolytic anemia. Am J Hematol. (2006) 81:598–602. 10.1002/ajh.20665
    1. Cortes J, O'Brien S, Loscertales J, Kantarjian H, Giles F, Thomas D, et al. . Cyclosporin A for the treatment of cytopenia associated with chronic lymphocytic leukemia. Cancer. (2001) 92:2016–22. 10.1002/1097-0142(20011015)92:8<2016::AID-CNCR1539>;2-E
    1. Karlsson C, Hansson L, Celsing F, Lundin J. Treatment of severe refractory autoimmune hemolytic anemia in B-cell chronic lymphocytic leukemia with alemtuzumab (humanized CD52 monoclonal antibody) Leukemia. (2007) 21:511–4. 10.1038/sj.leu.2404512
    1. Osterborg A, Karlsson C, Lundin J. Alemtuzumab to treat refractory autoimmune hemolytic anemia or thrombocytopenia in chronic lymphocytic leukemia. Curr Hematol Malig Rep. (2009) 4:47–53. 10.1007/s11899-009-0007-4
    1. Cusack JC, Jr, Seymour JF, Lerner S, Keating MJ, Pollock RE. Role of splenectomy in chronic lymphocytic leukemia. J Am Coll Surg. (1997) 185:237–43. 10.1016/S1072-7515(97)00057-4
    1. Pamuk G, Turgut B, Demir M, Tezcan F, Vural O. The successful treatment of refractory autoimmune hemolytic anemia with rituximab in a patient with chronic lymphocytic leukemia. Am J Hematol. (2006) 81:631–3. 10.1002/ajh.20671
    1. Berentsen S, Randen U, Oksman M, Birgens H, Tvedt THA, Dalgaard J, et al. . Bendamustine plus rituximab for chronic cold agglutinin disease: results of a Nordic prospective multicenter trial. Blood. (2017) 130:537–41. 10.1182/blood-2017-04-778175
    1. Quinquenel A, Willekens C, Dupuis J, Royer B, Ysebaert L, De Guibert S, et al. . Bendamustine and rituximab combination in the management of chronic lymphocytic leukemia-associated autoimmune hemolytic anemia: a multicentric retrospective study of the French CLL intergroup (GCFLLC/MW and GOELAMS). Am J Hematol. (2015) 90:204–7. 10.1002/ajh.23909
    1. Berentsen S, Randen U, Vågan AM, Hjorth-Hansen H, Vik A, Dalgaard J, et al. . High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. (2010) 116:3180–4. 10.1182/blood-2010-06-288647
    1. D'Arena G, Capalbo S, Laurenti L, Del Poeta G, Nunziata G, Deaglio S, et al. . Chronic lymphocytic leukemia-associated immune thrombocytopenia treated with rituximab: a retrospective study of 21 patients. Eur J Haematol. (2010) 85:502–7. 10.1111/j.1600-0609.2010.01527.x
    1. Hegde UP, Wilson WH, White T, Cheson BD. Rituximab treatment of refractory fludarabine-associated immune thrombocytopenia in chronic lymphocytic leukemia. Blood. (2002) 100:2260–2. 10.1182/blood.V100.6.2260
    1. Fernandez M, Llopis I, Pastor E, Real E, Grau E. Immune thrombocytoepnia induced by fludarabine successfully treated with rituximab. Haematologica. (2003) 88:ELT02.
    1. Jolliffe E, Romeril K. Eltrombopag for resistant immune thrombocytopenia secondary to secondary lymphocytic leukemia. Intern Med J. (2014) 44:697–9. 10.1111/imj.12468
    1. Koehrer S, Keating MJ, Wierda WG. Eltrombopag, a second-generation thrombopoietin receptor agonist, for chronic lymphocytic leukemia-associated ITP. Leukemia. (2010) 24:1096–8. 10.1038/leu.2010.45
    1. Paul S, Jain N, Ferrajoli A, O'Brien S, Burger J, Keating M, et al. . A phase II trial of eltrombopag for patients with chronic lymphocytic leukaemia (CLL) and thrombocytopenia. Br J Haematol. (2019) 185:606–8. 10.1111/bjh.15581
    1. Gupta N, Kavuru S, Patel D, Janson D, Driscoll N, Ahmed S, et al. . Rituximab-based chemotheray for steroid-refractory autoimmune hemolytic anemia of chronic lymphocytic leukemia. Leukemia. (2002) 16:2092–5. 10.1038/sj.leu.2402676
    1. Michallet A, Rossignol J, Cazin B, Ysebaert L. Rituximab–cyclophosphamide–dexamethasone combination in management of autoimmune cytopenias associated with chronic lymphocytic leukemia. Leuk Lymphoma. (2011) 52:1401–3. 10.3109/10428194.2011.591005
    1. Bowen DA, Call TG, Shanafelt TD, Kay NE, Schwager SM, Reinalda MS, et al. . Treatment of autoimmune cytopenia complicating progressive chronic lymphocytic leukemia/small lymphocytic lymphoma with rituximab, cyclophosphamide, vincristine, and prednisone. Leuk Lymphoma. (2010) 51:620–7. 10.3109/10428191003682767
    1. Kaufman M, Limaye SA, Driscoll N, Johnson C, Caramanica A, Lebowicz Y, et al. . A combination of rituximab, cyclophosphamide, and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma. (2009) 50:892–9. 10.1080/10428190902887563
    1. Borthakur G, O'Brien S, Wierda WG, Thomas DA, Cortes JE, Giles FJ, et al. . Immune anaemias in patients with chronic lymphocytic leukaemia treated with fludrabine, cyclophosphamide and rituximab–incidence and predictors. Br J Haematol. (2007) 136:800–5. 10.1111/j.1365-2141.2007.06513.x
    1. Church A, VanDerMeid KR, Baig NA, Baran AM, Witzig TE, Nowakowski GS, et al. . Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin Exp Immunol. (2016) 183:90–101. 10.1111/cei.12697
    1. Lacerda MP, Guedes NR, Yamakawa PE, Pereira AD, Fonseca ARBMD, Chauffaille MLLF, et al. . Treatment of refractory autoimmune hemolytic anemia with venetoclax in relapsed chronic lymphocytic leukemia with del(17p). Ann Hematol. (2017) 96:1577–8. 10.1007/s00277-017-3039-1
    1. Gordon MJ, Maldonado E, Danilov AV. Refractory autoimmune cytopenias treated with venetoclax. Hemasphere. (2019) 3:e202. 10.1097/HS9.0000000000000202
    1. Visco C, Rodeghiero F, Romano A, Valeri F, Merli M, Quaresimini G, et al. . Eltrombopag for immune thrombocytopenia secondary to chronic lymphoproliferative disorders: a phase 2 multicenter study. Blood. (2019) 134:1708–11. 10.1182/blood.2019001617
    1. Pascual V, Victor K, Lelsz D, Spellerberg MB, Hamblin TJ, Thompson KM, et al. . Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype. J Immunol. (1991) 146:4385–91.
    1. Silberstein LE, Jefferies LC, Goldman J, Friedman D, Moore JS, Nowell PC, et al. . Variable region gene analysis of pathologic human autoantibodies to the related i and I red blood cell antigens. Blood. (1991) 78:2372–86. 10.1182/blood.V78.9.2372.2372
    1. Potter KN, Hobby P, Klijn S, Stevenson FK, Sutton BJ. Evidence for involvement of a hydrophobic patch in framework region 1 of human V4-34-encoded Igs in recognition of the red blood cell I antigen. J Immunol. (2002) 169:3777–82. 10.4049/jimmunol.169.7.3777
    1. Marks JD, Ouwehand WH, Bye JM, Finnern R, Gorick BD, Voak D, et al. . Human antibody fragments specific for human blood group antigens from a phage display library. Biotechnology. (1993) 11:1145–9. 10.1038/nbt1093-1145
    1. Michaux L, Dierlamm J, Wlodarska I, Stul M, Bosly A, Delannoy A, et al. . Trisomy 3 is a consistent chromosome change in malignant lymphoproliferative disorders preceded by cold agglutinin disease. Br J Haematol. (1995) 91:421–4. 10.1111/j.1365-2141.1995.tb05315.x
    1. Silberstein LE, Robertson GA, Harris AC, Moreau L, Besa E, Nowell PC. Etiologic aspects of cold agglutinin disease: evidence for cytogenetically defined clones of lymphoid cells and the demonstration that an anti-Pr cold autoantibody is derived from a chromosomally aberrant B cell clone. Blood. (1986) 67:1705–9.
    1. D'Abronzo LS, Barros MM, Bordin JO, Figueiredo MS. Analysis of polymorphisms of TNF-α, LT-α, IL-10, IL-12 and CTLA-4 in patients with warm autoimmune haemolytic anaemia. Int J Lab Hematol. (2012) 34:356–61. 10.1111/j.1751-553X.2012.01400.x
    1. Malecka A, Trøen G, Tierens A, Østlie I, Małecki J, Randen U, et al. . Immunoglobulin heavy and light chain gene features are correlated with primary cold agglutinin disease onset and activity. Haematologica. (2016) 101:e361–4. 10.3324/haematol.2016.146126
    1. Smirnova SJ, Sidorova JV, Tsvetaeva NV, Nikulina OF, Biderman BV, Nikulina EE, et al. . Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. (2016) 49:147–54. 10.3109/08916934.2016.1138219
    1. Malecka A, Troen G, Tierens A, Østlie I, Małecki J, Randen U, et al. . Frequent somatic mutations of KMT2D (MLL2) and CARD11 genes in primary cold agglutinin disease. Br J Haematol. (2018) 183:838–42. 10.1111/bjh.15063
    1. Efremov DG, Ivanovski M, Burrone OR. The pathologic significance of the immunoglobulins expressed by chronic lymphocytic leukemia B-cells in the development of autoimmune hemolytic anemia. Leuk Lymphoma. (1998) 28:285–93. 10.3109/10428199809092684
    1. Efremov DG, Ivanovski M, Siljanovski N, Pozzato G, Cevreska L, Fais F, et al. . Restricted immunoglobulin VH region repertoire in chronic lymphocytic leukemia patients with autoimmune hemolytic anemia. Blood. (1996) 87:3869–76. 10.1182/blood.V87.9.3869.bloodjournal8793869
    1. Kryachok I, Abramenko I, Bilous N, Chumak A, Martina Z, Filonenko I. IGHV gene rearrangements as outcome predictors for CLL patients: experience of Ukrainian group. Med Oncol. (2012) 29:1093–101. 10.1007/s12032-011-9872-5
    1. Pavkovic M, Georgievski B, Cevreska L, Spiroski M, Efremov DG. CTLA-4 exon 1 polymorphism in patients with autoimmune blood disorders. Am J Hematol. (2003) 72:147–9. 10.1002/ajh.10278
    1. Ferrer G, Navarro A, Hodgson K, Aymerich M, Pereira A, Baumann T, et al. . MicroRNA expression in chronic lymphocytic leukemia developing autoimmune hemolytic anemia. Leuk Lymphoma. (2013) 54:2016–22. 10.3109/10428194.2012.763123
    1. Maura F, Visco C, Falisi E, Reda G, Fabris S, Agnelli L, et al. . B-cell receptor configuration and adverse cytogenetics are associated with autoimmune hemolytic anemia in chronic lymphocytic leukemia. Am J Hematol. (2013) 88:32–6. 10.1002/ajh.23342
    1. Carli G, Visco C, Falisi E, Perbellini O, Novella E, Giaretta I, et al. . Evans syndrome secondary to chronic lymphocytic leukaemia: presentation, treatment, and outcome. Ann Hematol. (2016) 95:863–70. 10.1007/s00277-016-2642-x
    1. Nagelkerke SQ, Bruggeman CW, den Haan JMM, Mul EPJ, van den Berg TK, van Bruggen R, et al. . Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors. Blood Adv. (2018) 2:941–53. 10.1182/bloodadvances.2017015008
    1. Xing L, Xu W, Qu Y, Zhao M, Zhu H, Liu H, et al. . miR-150 regulates B lymphocyte in autoimmune hemolytic anemia/Evans syndrome by c-Myb. Int J Hematol. (2018) 107:666–72. 10.1007/s12185-018-2429-z
    1. Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magérus-Chatinet A, Mazerolles F. Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood. (2019) 134:9–21. 10.1182/blood-2018-11-887141
    1. Jefferies LC, Carchidi CM, Silberstein LE. Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment. J Clin Invest. (1993) 92:2821–33. 10.1172/JCI116902
    1. Martorelli D, Guidoboni M, De Re V, Muraro E, Turrini R, Merlo A, et al. . IGKV3 proteins as candidate “off-the-shelf” vaccines for kappa-light chain-restricted B-cell non-Hodgkin lymphomas. Clin Cancer Res. (2012) 18:4080–91. 10.1158/1078-0432.CCR-12-0763
    1. Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT, et al. . Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest. (2005) 115:1636–43. 10.1172/JCI24387
    1. Visco C, Giaretta I, Ruggeri M, Madeo D, Tosetto A, Rodeghiero F. Un-mutated IgVH in chronic lymphocytic leukemia is associated with a higher risk of immune thrombocytopenia. Leukemia. (2007) 21:1092–3. 10.1038/sj.leu.2404592
    1. Visco C, Ruggeri M, Laura EM, Stasi R, Zanotti R, Giaretta I, et al. . Impact of immune thrombocytopenia on the clinical course of chronic lymphocytic leukemia. Blood. (2008) 111:1110–6. 10.1182/blood-2007-09-111492
    1. Visco C, Novella E, Peotta E, Paolini R, Giaretta I, Rodeghiero F. Autoimmune hemolytic anemia in patients with chronic lymphocytic leukemia is associated with IgVH status. Haematologica. (2010) 95:1230–2. 10.3324/haematol.2010.022079
    1. Visco C, Maura F, Tuana G, Agnelli L, Lionetti M, Fabris S, et al. . Immune thrombocytopenia in patients with chronic lymphocytic leukemia is associated with stereotyped B-cell receptors. Clin Cancer Res. (2012) 18:1870–8. 10.1158/1078-0432.CCR-11-3019
    1. Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood. (2007) 109:4424–31. 10.1182/blood-2006-11-056648
    1. Bomben R, Dal BM, Capello D, Forconi F, Maffei R, Laurenti L, et al. . Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol. (2009) 144:492–506. 10.1111/j.1365-2141.2008.07469.x
    1. Maura F, Cutrona G, Fabris S, Colombo M, Tuana G, Agnelli L, et al. . Relevance of stereotyped B-cell receptors in the context of the molecular, cytogenetic and clinical features of chronic lymphocytic leukemia. PLoS ONE. (2011) 6:e24313. 10.1371/journal.pone.0024313
    1. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. . Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. (2007) 109:259–70. 10.1182/blood-2006-03-012948
    1. Tobin G, Thunberg U, Johnson A, Eriksson I, Söderberg O, Karlsson K, et al. . Chronic lymphocytic leukemias utilizing the VH3–21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. (2003) 101:4952–7. 10.1182/blood-2002-11-3485
    1. Widhopf GF, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood. (2004) 104:2499–504. 10.1182/blood-2004-03-0818
    1. Marron MP, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, Martinez Larrad MT, et al. Insulin-dependentdiabetes mellitus (IDDM) is associated with CTLA-4 polymorphismsin multiple ethnic groups. Hum Mol Genet. (1997) 6:1275–82. 10.1093/hmg/6.8.1275
    1. Donner H, Braun J, Seidl C, Rau H, Finke R, Ventz M, et al. . Codon 17 polymorphism of the cytotoxicT lymphocyte antigen 4 gene in Hashimoto's thyroiditis and Addison'sdisease. J Clin Endocrinol Metab. (1997) 82:4130–2. 10.1210/jcem.82.12.4406
    1. Shaker OG, Alnoury AM, Hegazy GA, El Haddad HE, Sayed S, Hamdy A. Methylene tetrahydrofolate reductase, transforming growth factor-β1 and lymphotoxin-α genes polymorphisms and susceptibility to rheumatoid arthritis. Rev Bras Reumatol Engl Ed. (2016) 56:414–20. 10.1016/j.rbre.2016.04.002
    1. Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, et al. . The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. (2015) 21:1199–208. 10.1038/nm.3943
    1. Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Sci. (2016) 107:1543–9. 10.1111/cas.13062
    1. Young RM, Staudt LM. A new “brew” of MALT1 inhibitors. Cancer Cell. (2012) 22:706–7. 10.1016/j.ccr.2012.11.011
    1. Michel M, Chanet V, Dechartres A, Morin AS, Piette JC, Cirasino L, et al. . The spectrum of Evans syndrome in adults:new insight into the disease based on the analysis of 68 cases. Blood. (2009) 114:3167–72. 10.1182/blood-2009-04-215368
    1. Klemann C, Esquivel M, Magerus-Chatinet A, Lorenz MR, Fuchs I, Neveux N, et al. . Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica. (2017) 102:e52–6. 10.3324/haematol.2016.153411
    1. Rao VK, Webster S, Dalm VASH, Šedivá A, van Hagen PM, Holland S, et al. . Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood. (2017) 130:2307–16. 10.1182/blood-2017-08-801191
    1. Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, et al. . Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol. (2018) 142:1932–46. 10.1016/j.jaci.2018.02.055
    1. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. . Patients with LRBAdeficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. (2015) 349:436–40. 10.1126/science.aaa1663
    1. Del Bel KL, Ragotte RJ, Saferali A, Lee S, Vercauteren SM, Mostafavi SA, et al. . JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol. (2017) 139:2016–20.e5. 10.1016/j.jaci.2016.12.957
    1. Penel Page M, Bertrand Y, Fernandes H, Kherfellah D, Leverger G, Leblanc T, et al. Treatment with cyclosporin in autoimmune cytopenias in children: the experience from the French cohort OBS'CEREVANCE. Am J Hematol. (2018). 10.1002/ajh.25137. [Epub ahead of print].
    1. Roark JH, Bussel JB, Cines DB, Siegel DL. Genetic analysis of autoantibodies in idiopathic thrombocytopenic purpura reveals evidence of clonal expansion and somatic mutation. Blood. (2002) 100:1388–98. 10.1182/blood.V100.4.1388.h81602001388_1388_1398
    1. Zheng CX, Ji ZQ, Zhang LJ, Wen Q, Chen LH, Yu JF, et al. . Proteomics-based identification of haptoglobin as a favourable serum biomarker for predicting long-term response to splenectomy in patients with primary immune thrombocytopenia. J Transl Med. (2012) 10:208. 10.1186/1479-5876-10-208
    1. Hu Y, Wang X, Yu S, Hou Y, Ma D, Hou M. Neutralizations of IL-17A and IL-21 regulate regulatory T cell/T-helper 17 imbalance via T-helper 17-associated signaling pathway in immune thrombocytopenia. Expert Opin Ther Targets. (2015) 19:723–32. 10.1517/14728222.2015.1016499
    1. Chen Z, Guo Z, Ma J, Liu F, Gao C, Liu S, et al. STAT1 single nucleotide polymorphisms and susceptibility to immune thrombocytopenia Autoimmunity. (2015) 48:305–12. 10.3109/08916934.2015.1016218
    1. Burenbatu, Borjigin M, Eerdunduleng, Huo W, Gong C, Hasengaowa, et al. . Profiling of miRNA expression in immune thrombocytopenia patients before and after Qishunbaolier (QSBLE) treatment. Biomed Pharmacother. (2015) 75:196–204. 10.1016/j.biopha.2015.07.022
    1. Li JQ, Hu SY, Wang ZY, Lin J, Jian S, Dong YC. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura. Biomed Pharmacother. (2016) 83:905–11. 10.1016/j.biopha.2016.07.057
    1. Zhang HW, Zhou P, Wang KZ, Liu JB, Huang YS, Tu YT, et al. . Platelet proteomics in diagnostic differentiation of primary immune thrombocytopenia using SELDI-TOF-MS. Clin Chim Acta. (2016) 455:75–79. 10.1016/j.cca.2016.01.028
    1. Yao X, Li C, Yang J, Wang G, Li C, Xia Y. Differences in frequency and regulation of T follicular helper cells between newly diagnosed and chronic pediatric immune thrombocytopenia. Blood Cells Mol Dis. (2016) 61:26–36. 10.1016/j.bcmd.2016.06.006
    1. Peng HL, Zhang Y, Sun NN, Yin YF, Wang YW, Cheng Z, et al. . A gain-of-function mutation in TNFRSF13B is a candidate for predisposition to familial or sporadic immune thrombocytopenia. J Thromb Haemost. (2017) 15:2259–69. 10.1111/jth.13806
    1. Li H, Zhou Z, Tai W, Feng W, Zhang D, Gu X, et al. . Decreased frequency of IL-17F rs763780 site allele G is associated with genetic susceptibility to immune thrombocytopenia in a Chinese population. Clin Appl Thromb Hemost. (2017) 23:466–71. 10.1177/1076029615618022
    1. Yu J, Hua M, Zhao X, Wang R, Zhong C, Zhang C, et al. . NF-κB-94ins/del ATTG genotype contributes to the susceptibility and imbalanced Th17 cells in patients with immune thrombocytopenia. J Immunol Res. (2018) 2018:8170436. 10.1155/2018/8170436
    1. Li T, Gu M, Liu P, Liu Y, Guo J, Zhang W, et al. . Abnormal expression of long noncoding RNAs in primary immune thrombocytopenia: a microarray related study. Cell Physiol Biochem. (2018) 48:618–32. 10.1159/000491890
    1. Zhang JM, Zhu XL, Xue J, Liu X, Long Zheng X, Chang YJ, et al. . Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia. Funct Integr Genomics. (2018) 18:287–99. 10.1007/s10142-018-0591-2
    1. Kunicki TJ, Annis DS, Gorski J, Nugent DJ. Nucleotide sequence of the human autoantibody 2E7 specific for the platelet integrin IIb heavy chain. J Autoimmun. (1991) 4:433–46. 10.1016/0896-8411(91)90157-8
    1. Kunicki TJ, Plow EF, Kekomaki R, Nugent DJ. Human monoclonal autoantibody 2E7 is specific for a peptide sequence of platelet glycoprotein IIb: localization of the epitope to IIb231–238 with an immunodominant Trp235. J Autoimmun. (1991) 4:415–31. 10.1016/0896-8411(91)90156-7
    1. Jendreyko N, Uttenreuther-Fischer MM, Lerch H, Gaedicke G, Fischer P. Genetic origin of IgG antibodies cloned by phage display and anti-idiotypic panning from three patients with autoimmune thrombocytopenia. Eur J Immunol. (1998) 28:4236–47. 10.1002/(SICI)1521-4141(199812)28:12<4236::AID-IMMU4236>;2-R
    1. Fischer P, Jendreyko N, Hoffmann M, Lerch H, Uttenreuther-Fischer MM, Chen PP, et al. . Platelet-reactive IgG antibodies cloned by phage display and panning with IVIG from three patients with autoimmune thrombocytopenia. Br J Haematol. (1999) 105:626–40. 10.1046/j.1365-2141.1999.01407.x
    1. Bettaieb A, Oksenhendler E, Duedari N, Bierling P. Cross-reactive antibodies between HIV-gp120 and platelet gpIIIa (CD61) in HIV-related immune thrombocytopenic purpura. Clin Exp Immunol. (1996) 103:19–23. 10.1046/j.1365-2249.1996.917606.x
    1. van der Harst D, de Jong D, Limpens J, Kluin PM, Rozier Y, van Ommen GJ, et al. . Clonal B-cell populations in patients with idiopathic thrombocytopenic purpura. Blood. (1990) 76:2321–6. 10.1182/blood.V76.11.2321.bloodjournal76112321
    1. Christie DJ, Sauro SC, Fairbanks KD, Kay NE. Detection of clonal platelet antibodies in immunologically-mediated thrombocytopenias: association with circulating clonal/oligoclonal B cells. Br J Haematol. (1993) 85:277–84. 10.1111/j.1365-2141.1993.tb03167.x
    1. Stockelberg D, Hou M, Jacobsson S, Kutti J, Wadenvik H. Evidence for a light chain restriction of glycoprotein Ib/IX and IIb/IIIa reactive antibodies in chronic idiopathic thrombocytopenic purpura (ITP). Br J Haematol. (1995) 90:175–9. 10.1111/j.1365-2141.1995.tb03397.x
    1. Stockelberg D, Hou M, Jacobsson S, Kutti J, Wadenvik H. Light chain-restricted autoantibodies in chronic idiopathic thrombocytopenic purpura, but no evidence for circulating clone B-lymphocytes. Ann Hematol. (1996) 72:29–34. 10.1007/BF00663013
    1. McMillan R, Lopez-Dee J, Bowditch R. Clonal restriction of platelet-associated anti-GPIIb/IIIa autoantibodies in patients with chronic ITP. Thromb Haemost. (2001) 85:821–3. 10.1055/s-0037-1615754
    1. Crowley JJ, Mageed RA, Silverman GJ, Chen PP, Kozin F, Erger RA, et al. . The incidence of a new human cross-reactive idiotype linked to subgroup VHIII heavy chains. Mol Immunol. (1990) 27:87–94. 10.1016/0161-5890(90)90063-6
    1. Shokri F, Mageed RA, Maziak BR, Jefferis R. Expression of VHIII-associated cross-reactive idiotype on human B lymphocytes: association with staphylococcal protein A binding and Staphylococcus aureus Cowan I stimulation. J Immunol. (1991) 146:936–40.
    1. Silverman G. B cell superantigens: possible roles in immunodeficiency and autoimmunity. Semin Immunol. (1998) 10:43–55. 10.1006/smim.1997.0104
    1. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, et al. . Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci USA. (2000) 97:5399–404. 10.1073/pnas.97.10.5399
    1. Silverman G, Cary S, Dwyer D, Luo L, Wagenknecht R, Curtiss V. A B-cell superantigen induced persistent “hole” in the B-1 repertoire. J Exp Med. (2000) 192:87–98. 10.1084/jem.192.1.87
    1. Goodyear CS, Silverman GJ. Evidence of a novel immunomodulatory mechanism of action of Prosorba therapy: release of staphylococcal protein A induces VH region targeted apoptotic death of B lymphocytes. Arthritis Rheum. (2001) 44:S296 Available online at:
    1. Barcellini W, Fattizzo B, Zaninoni A, Valli V, Ferri V, Gianelli U, et al. . Clinical evolution of autoimmune cytopenias to idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and bone marrow failure syndromes. Am J Hematol. (2017) 92:E26–9. 10.1002/ajh.24618
    1. Fattizzo B, Zaninoni A, Consonni D, Zanella A, Gianelli U, Cortelezzi A, et al. . Is chronic neutropenia always a benign disease? Evidences from a 5-year prospective study. Eur J Intern Med. (2015) 26:611–5. 10.1016/j.ejim.2015.05.019
    1. Fattizzo B, Zaninoni A, Gianelli U, Zanella A, Cortelezzi A, Kulasekararaj AG, et al. . Prognostic impact of bone marrow fibrosis and dyserythropoiesis in autoimmune hemolytic anemia. Am J Hematol. (2018) 93:E88–E91. 10.1002/ajh.25020
    1. Barcellini W. The relationship between idiopathic cytopenias/dysplasias of uncertain significance (ICUS/IDUS) and autoimmunity. Expert Rev Hematol. (2017) 10:649–57. 10.1080/17474086.2017.1339597

Source: PubMed

3
Sottoscrivi