Variability and Stability in Daily Moderate-to-Vigorous Physical Activity among 10 Year Old Children

Sara Pereira, Thayse Natacha Gomes, Alessandra Borges, Daniel Santos, Michele Souza, Fernanda K dos Santos, Raquel N Chaves, Peter T Katzmarzyk, José A R Maia, Sara Pereira, Thayse Natacha Gomes, Alessandra Borges, Daniel Santos, Michele Souza, Fernanda K dos Santos, Raquel N Chaves, Peter T Katzmarzyk, José A R Maia

Abstract

Day-to-day variability and stability of children's physical activity levels across days of the week are not well understood. Our aims were to examine the day-to-day variability of moderate-to-vigorous physical activity (MVPA), to determine factors influencing the day-to-day variability of MVPA and to estimate stability of MVPA in children. The sample comprises 686 Portuguese children (10 years of age). MVPA was assessed with an accelerometer, and BMI was computed from measured height and weight. Daily changes in MVPA and their correlates (gender, BMI, and maturity) were modeled with a multilevel approach, and tracking was calculated using Foulkes & Davies γ. A total of 51.3% of boys and 26.2% of girls achieved 60 min/day of MVPA on average. Daily MVPA was lower during the weekend (23.6% of boys and 13.6% of girls comply with the recommended 60 min/day of MVPA) compared to weekdays (60.8% and 35.4%, boys and girls, respectively). Normal weight children were more active than obese children and no effect was found for biological maturation. Tracking is low in both boys (γ = 0.59 ± 0.01) and girls (γ = 0.56 ± 0.01). Children's MVPA levels during a week are highly unstable. In summary, boys are more active than girls, maturation does not affect their MVPA, and obese children are less likely to meet 60 min/day of MVPA. These results highlight the importance of providing opportunities for increasing children's daily MVPA on all days of week, especially on the weekend.

Keywords: Actigraph; accelerometry; children; patterns; recommendations MVPA; tracking.

Figures

Figure 1
Figure 1
Observed and modelled daily MVPA changes in boys and girls.

References

    1. World Health Organization . Global Recommendation on Physical Activity for Health. World Health Organization; Geneva, Switzerland: 2010.
    1. Janssen I., LeBlanc A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Activ. 2010;7:40–55. doi: 10.1186/1479-5868-7-40.
    1. Hind K., Burrows M. Review: Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone. 2007;40:14–27. doi: 10.1016/j.bone.2006.07.006.
    1. Ness A.R., Leary S.D., Mattocks C., Blair S.N., Reilly J.J., Wells J., Ingle S., Tilling K., Smith G.D., Riddoch C. Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007;4:476–484. doi: 10.1371/journal.pmed.0040097.
    1. Andersen L.B., Harro M., Sardinha L.B., Froberg K., Ekelund U., Brage S., Anderssen S.A. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (the European Youth Heart Study) Lancet. 2006;368:299–304. doi: 10.1016/S0140-6736(06)69075-2.
    1. Ferreira A.P., Oliveira C.E.R., França N.M. Metabolic syndrome and risk factors for cardiovascular disease in obese children: The relationship with insulin resistance (HOMA-IR) J. Pediatr. 2007;83:21–26. doi: 10.2223/JPED.1562.
    1. Westerterp K.R., Speakman J.R. Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int. J. Obes. (Lond.) 2008;32:1256–1263. doi: 10.1038/ijo.2008.74.
    1. Ekelund U., Tomkinson G., Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Brit. J. Sports Med. 2011;45:859–865. doi: 10.1136/bjsports-2011-090190.
    1. Brooke H.L., Corder K., Atkin A.J., van Sluijs E.M. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sport. Med. 2014;44:1427–1438. doi: 10.1007/s40279-014-0215-5.
    1. Strong W.B., Malina R.M., Blimkie C.J., Daniels S.R., Dishman R.K., Gutin B., Hergenroeder A.C., Must A., Nixon P.A., Pivarnik J.M., et al. Evidence based physical activity for school-age youth. J. Pediatr. 2005;146:732–737. doi: 10.1016/j.jpeds.2005.01.055.
    1. Verloigne M., Van Lippevelde W., Maes L., Yildirim M., Chinapaw M., Manios Y., Androutsos O., Kovacs E., Bringolf-Isler B., Brug J., et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the Energy-Project. Int. J. Behav. Nutr. Phys. Act. 2012;9:34. doi: 10.1186/1479-5868-9-34.
    1. Basterfield L., Adamson A.J., Frary J.K., Parkinson K.N., Pearce M.S., Reilly J.J. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2011;127:e24–e30. doi: 10.1542/peds.2010-1935.
    1. Baptista F., Santos D.A., Silva A.M., Mota J., Santos R., Vale S., Ferreira J.P., Raimundo A.M., Moreira H., Sardinha L.B. Prevalence of the Portuguese population attaining sufficient physical activity. Med. Sci. Sports Exerc. 2012;44:466–473. doi: 10.1249/MSS.0b013e318230e441.
    1. Sallis J.F., Prochaska J.J., Taylor W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000;32:963–975. doi: 10.1097/00005768-200005000-00014.
    1. Gustafson S.L., Rhodes R.E. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36:79–97. doi: 10.2165/00007256-200636010-00006.
    1. Ferreira I., Van der Horst K., Wendel-Vos W., Kremers S., Van Lenthe F.J., Brug J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007;8:129–154. doi: 10.1111/j.1467-789X.2006.00264.x.
    1. Stanley R.M., Ridley K., Dollman J. Correlates of children’s time-specific physical activity: A review of the literature. Int. J. Behav. Nutr. Phys. Act. 2012;9:50. doi: 10.1186/1479-5868-9-50.
    1. Erlandson M.C., Sherar L.B., Mosewich A.D., Kowalski K.C., Bailey D.A., Baxter-Jones A.D. Does controlling for biological maturity improve physical activity tracking? Med. Sci. Sports Exerc. 2011;43:800–807. doi: 10.1249/MSS.0b013e3181ffee8a.
    1. Nilsson A., Anderssen S.A., Andersen L.B., Froberg K., Riddoch C., Sardinha L.B., Ekelund U. Between- and within-day variability in physical activity and inactivity in 9- and 15-year-old European children. Scand. J. Med. Sci. Sports. 2009;19:10–18. doi: 10.1111/j.1600-0838.2007.00762.x.
    1. McKenzie T.L., Nader P.R., Strikmiller P.K., Yang M., Stone E.J., Perry C.L., Taylor W.C., Epping J.N., Feldman H.A., Luepker R.V., et al. School physical education: Effect of the child and adolescent trial for cardiovascular health. Prev. Med. 1996;25:423–431. doi: 10.1006/pmed.1996.0074.
    1. Verstraete S.J., Cardon G.M., De Clercq D.L., de Bourdeaudhuij I.M. Increasing children’s physical activity levels during recess periods in elementary schools: The effects of providing game equipment. Eur. J. Public Health. 2006;16:415–419. doi: 10.1093/eurpub/ckl008.
    1. Ridgers N.D., Stratton G., Fairclough S.J., Twisk J.W. Long-term effects of a playground markings and physical structures on children’s recess physical activity levels. Prev. Med. 2007;44:393–397. doi: 10.1016/j.ypmed.2007.01.009.
    1. Telford R.M., Telford R.D., Cunningham R.B., Cochrane T., Davey R., Waddington G. Longitudinal patterns of physical activity in children aged 8 to 12 years: The look study. Int. J. Behav. Nutr. Phys. Act. 2013;10:81. doi: 10.1186/1479-5868-10-81.
    1. Jones R.A., Hinkley T., Okely A.D., Salmon J. Tracking physical activity and sedentary behavior in childhood: A systematic review. Am. J. Prev. Med. 2013;44:651–658. doi: 10.1016/j.amepre.2013.03.001.
    1. Dencker M., Tanha T., Wollmer P., Karlsson M.K., Andersen L.B., Thorsson O. Tracking of physical activity with accelerometers over a 2-year time period. J. Phys. Act. Health. 2013;10:241–248.
    1. Edwards N.M., Khoury P.R., Kalkwarf H.J., Woo J.G., Claytor R.P., Daniels S.R. Tracking of accelerometer-measured physical activity in early childhood. Pediatr. Exerc. Sci. 2013;25:487–501.
    1. Katzmarzyk P.T., Barreira T.V., Broyles S.T., Champagne C.M., Chaput J.P., Fogelholm M., Hu G., Johnson W.D., Kuriyan R., Kurpad A., et al. The international study of childhood obesity, lifestyle and the environment (ISCOLE): Design and methods. BMC Publ. Health. 2013;13:900. doi: 10.1186/1471-2458-13-900.
    1. World Health Organization Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. 1995. [(accessed on 5 August 2015)]. Available online: .
    1. Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694. doi: 10.1097/00005768-200204000-00020.
    1. Vincent S.D., Pangrazi R.P. An examination of the activity patterns of elementary school children. Pediatr. Exerc. Sci. 2002;14:432.
    1. Intille S.S., Lester J., Sallis J.F., Duncan G. New horizons in sensor development. Med. Sci. Sports Exerc. 2012;44:S24–S31. doi: 10.1249/MSS.0b013e3182399c7d.
    1. Dossegger A., Ruch N., Jimmy G., Braun-Fahrlander C., Mader U., Hanggi J., Hofmann H., Puder J.J., Kriemler S., Bringolf-Isler B. Reactivity to accelerometer measurement of children and adolescents. Med. Sci. Sports Exerc. 2014;46:1140–1146. doi: 10.1249/MSS.0000000000000215.
    1. Tudor-Locke C., Barreira T.V., Schuna J.M., Jr., Mire E.F., Katzmarzyk P.T. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl. Physiol. Nutr. Metab. 2014;39:53–57. doi: 10.1139/apnm-2013-0173.
    1. Barreira T.V., Schuna J.M., Jr., Mire E.F., Katzmarzyk P.T., Chaput J.P., Leduc G., Tudor-Locke C. Identifying children’s nocturnal sleep using 24-h waist accelerometry. Med. Sci. Sports Exerc. 2014 doi: 10.1249/MSS.0000000000000486.
    1. Evenson K.R., Catellier D.J., Gill K., Ondrak K.S., McMurray R.G. Calibration of two objective measures of physical activity for children. J. Sport. Sci. 2008;26:1557–1565. doi: 10.1080/02640410802334196.
    1. Tabachnick B., Fidell L.S. Using Multivariate Statistics. Pearson; New York, NY, USA: 2007.
    1. Foulkes M.A., Davis C.E. An index of tracking for longitudinal data. Biometrics. 1981;37:439–446. doi: 10.2307/2530557.
    1. Rogosa D., Ghandour G.A. Timepath: Stastical Analysis of Individual Trajectories. Stanford University; Stanford, CA, USA: 1988.
    1. Rogosa D. Individual trajectories as the starting point for longitudinal data analysis. Alzheimer Dis. Assoc. Disord. 1994;8:S302–S307.
    1. Rogosa D., Floden R.E., Willet J.B. Assessing the Stability of Teacher Behavior. East Lansing Institute for Research on Teaching, Michigan State University; East lansing, MI, USA: 1984.
    1. Hedeker D., Gibbons R., du Toit M., Cheng Y. Supermix for Mixed Effects Models. Scientific Software International; Lincolnwood, IL, USA: 2008.
    1. Vale S., Silva P., Santos R., Soares-Miranda L., Mota J. Compliance with physical activity guidelines in preschool children. J. Sports Sci. 2010;28:603–608. doi: 10.1080/02640411003702694.
    1. Laguna M., Ruiz J.R., Gallardo C., Garcia-Pastor T., Lara M.T., Aznar S. Obesity and physical activity patterns in children and adolescents. J. Paediatr. Child Health. 2013;49:942–949. doi: 10.1111/jpc.12442.
    1. Kettner S., Kobel S., Fischbach N., Drenowatz C., Dreyhaupt J., Wirt T., Koch B., Steinacker J.M. Objectively determined physical activity levels of primary school children in South-West Germany. BMC Public Health. 2013;13:895. doi: 10.1186/1471-2458-13-895.
    1. Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011;43:1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. DuRant R.H., Thompson W.O., Johnson M., Baranowski T. The relationship among television watching, physical activity, and body composition of 5- or 6-year-old children. Pediatr. Exerc. Sci. 1996;8:15–26.
    1. Sandercock G.R., Ogunleye A., Voss C. Screen time and physical activity in youth: Thief of time or lifestyle choice? J. Phys. Act. Health. 2012;9:977–984.
    1. Taverno Ross S., Dowda M., Saunders R., Pate R. Double dose: The cumulative effect of TV viewing at home and in preschool on children’s activity patterns and weight status. Pediatr. Exerc. Sci. 2013;25:262–272.
    1. Corder K., Craggs C., Jones A.P., Ekelund U., Griffin S.J., van Sluijs E.M. Predictors of change differ for moderate and vigorous intensity physical activity and for weekdays and weekends: A longitudinal analysis. Int. J. Behav. Nutr. Phys. Act. 2013;10:69. doi: 10.1186/1479-5868-10-69.
    1. McMinn A.M., Griffin S.J., Jones A.P., van Sluijs E.M. Family and home influences on children’s after-school and weekend physical activity. Eur. J. Public Health. 2013;23:805–810. doi: 10.1093/eurpub/cks160.
    1. Edwardson C.L., Gorely T. Review: Parental influences on different types and intensities of physical activity in youth: A systematic review. Psychol. Sport Exerc. 2010;11:522–535. doi: 10.1016/j.psychsport.2010.05.001.
    1. Lawman H.G., Wilson D.K. A review of family and environmental correlates of health behaviors in high-risk youth. Obesity (Silver Spring) 2012;20:1142–1157. doi: 10.1038/oby.2011.376.
    1. Jago R., Stamatakis E., Gama A., Carvalhal I.M., Nogueira H., Rosado V., Padez C. Parent and child screen-viewing time and home media environment. Am. J. Prev. Med. 2012;43:150–158. doi: 10.1016/j.amepre.2012.04.012.
    1. Vander Ploeg K.A., Kuhle S., Maximova K., McGavock J., Wu B., Veugelers P.J. The importance of parental beliefs and support for pedometer-measured physical activity on school days and weekend days among Canadian children. BMC Public Health. 2013;13:1132. doi: 10.1186/1471-2458-13-1132.
    1. Marshall J., Hardman K. Update on the state and status of physical education worldwide. Eur. Phys. Educ. Rev. 2000;6:203–229. doi: 10.1177/1356336X000063001.
    1. Hardman K. Physical education in schools: A global perspective. Kinesiology. 2008;40:5–28.
    1. Crespo N.C., Corder K., Marshall S., Norman G.J., Patrick K., Sallis J.F., Elder J.P. An examination of multilevel factors that may explain gender differences in children’s physical activity. J. Phys. Act. Health. 2013;10:982–992.
    1. Maia J.A., Thomis M., Beunen G. Genetic factors in physical activity levels: A twin study. Am. J. Prev. Med. 2002;23:87–91. doi: 10.1016/S0749-3797(02)00478-6.
    1. Boyle D.E., Marshall N.L., Robeson W.W. Gender at play: Fourth-grade girls and boys on the playground. Amer. Behav. Sci. 2003;46:1326–1345. doi: 10.1177/0002764203046010004.
    1. Carver A., Timperio A., Crawford D. Perceptions of neighborhood safety and physical activity among youth: The CLAN study. J. Phys. Act. Health. 2008;5:430–444.
    1. Niederer I., Kriemler S., Zahner L., Burgi F., Ebenegger V., Marques P., Puder J.J. BMI group-related differences in physical fitness and physical activity in preschool-age children: A cross-sectional analysis. Res. Quart. Exercise Sport. 2012;83:12–19. doi: 10.1080/02701367.2012.10599820.
    1. Rolland-Cachera M.F., Deheeger M., Bellisle F., Sempé M., Guilloud-Bataille M., Patois E. Adiposity rebound in children: A simple indicator for predicting obesity. Am. J. Clin. Nutr. 1984;39:129–135.
    1. Malina R.M. Top 10 research questions related to growth and maturation of relevance to physical activity, performance, and fitness. Res. Quart. Exercise Sport. 2014;85:157–173. doi: 10.1080/02701367.2014.897592.
    1. D’Hondt E., Deforche B., Gentier I., de Bourdeaudhuij I., Vaeyens R., Philippaerts R., Lenoir M. A longitudinal analysis of gross motor coordination in overweight and obese children versus normal-weight peers. Int. J. Obes. (Lond.) 2013;37:61–67. doi: 10.1038/ijo.2012.55.
    1. D’Hondt E., Deforche B., de Bourdeaudhuij I., Lenoir M. Relationship between motor skill and body mass index in 5- to 10-year-old children. Adapt. Phys. Act. Quart. 2009;26:21–37.
    1. Trost S.G., Kerr L.M., Ward D.S., Pate R.R. Physical activity and determinants of physical activity in obese and non-obese children. Int. J. Obes. Relat. Metab. Disord. 2001;25:822–829. doi: 10.1038/sj.ijo.0801621.
    1. Brouwer S.I., Stolk R.P., Liem E.T., Lemmink K.A., Corpeleijn E. The role of fitness in the association between fatness and cardiometabolic risk from childhood to adolescence. Pediatr. Diabetes. 2013;14:57–65. doi: 10.1111/j.1399-5448.2012.00893.x.
    1. Wickel E.E., Eisenmann J.C., Welk G.J. Maturity-related variation in moderate-to-vigorous physical activity among 9–14 year olds. J. Phys. Act. Health. 2009;6:597–605. doi: 10.1249/01.mss.0000322740.52753.79.
    1. Thompson A., Baxter-Jones A.D., Mirwald R.L., Bailey D.A. Comparison of physical activity in male and female children: Does maturation matter? Med. Sci. Sports Exerc. 2003;35:1684–1690. doi: 10.1249/01.MSS.0000089244.44914.1F.
    1. Kristensen P.L., Moller N.C., Korsholm L., Wedderkopp N., Andersen L.B., Froberg K. Tracking of objectively measured physical activity from childhood to adolescence: The European Youth Heart Study. Scand. J. Med. Sci. Sports. 2008;18:171–178. doi: 10.1111/j.1600-0838.2006.00622.x.

Source: PubMed

3
Sottoscrivi