A count model to study the correlates of 60 min of daily physical activity in Portuguese children

Alessandra Borges, Thayse Natacha Gomes, Daniel Santos, Sara Pereira, Fernanda K dos Santos, Raquel Chaves, Peter T Katzmarzyk, José Maia, Alessandra Borges, Thayse Natacha Gomes, Daniel Santos, Sara Pereira, Fernanda K dos Santos, Raquel Chaves, Peter T Katzmarzyk, José Maia

Abstract

This study aimed to present data on Portuguese children (aged 9-11 years) complying with moderate-to-vigorous physical activity (MVPA) guidelines, and to identify the importance of correlates from multiple domains associated with meeting the guidelines. Physical activity (PA) was objectively assessed by accelerometry throughout seven days on 777 children. A count model using Poisson regression was used to identify the best set of correlates that predicts the variability in meeting the guidelines. Only 3.1% of children met the recommended daily 60 min of MVPA for all seven days of the week. Further, the Cochrane-Armitage chi-square test indicated a linear and negative trend (p<0.001) from none to all seven days of children complying with the guidelines. The count model explained 22% of the variance in meeting MVPA guidelines daily. Being a girl, having a higher BMI, belonging to families with higher income, sleeping more and taking greater time walking from home to a sporting venue significantly reduced the probability of meeting daily recommended MVPA across the seven days. Furthermore, compared to girls, increasing sleep time in boys increased their chances of compliance with the MVPA recommendations. These results reinforce the relevance of considering different covariates' roles on PA compliance when designing efficient intervention strategies to promote healthy and active lifestyles in children.

Figures

Figure 1
Figure 1
Percentage of children meeting the 60 min of MVPA guidelines by the number of days per week (N = never, 1D = 1 day, 2D = 2 days, 3D = 3 days, 4D = 4 days, 5D = 5 days, 6D = 6 days, ED = every day).

References

    1. Ekelund U., Tomkinson G., Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br. J. Sports Med. 2011;45:859–865. doi: 10.1136/bjsports-2011-090190.
    1. Dollman J., Norton K., Norton L. Evidence for secular trends in children’s physical activity behaviour. Br. J. Sports Med. 2005;39:892–897. doi: 10.1136/bjsm.2004.016675.
    1. World Health Organization . Global Recommendations on Physical Activity for Health. WHO; Geneva, Switzerland: 2010.
    1. Strong W., Malina R., Blimkie C., Daniels S., Dishman R., Gutin B., Hergenroeder A., Must A., Nixon P., Pivarnik J., et al. Evidence based physical activity for school-age youth. J. Pediatr. 2005;146:732–737. doi: 10.1016/j.jpeds.2005.01.055.
    1. Andersen L.B., Anderssen S.A., Harro M., Sardinha L.B., Froberg K., Ekelund U., Brage S. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (the European youth heart study) Lancet. 2006;368:299–304. doi: 10.1016/S0140-6736(06)69075-2.
    1. Andersen L., Hasselstrøm H., Grønfeldt V., Hansen S., Froberg K. The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: Eight years follow-up in the danish youth and sport study. Int. J. Behav. Nutr. Phys. Activity. 2004;1 doi: 10.1186/1479-5868-1-6.
    1. Crespo N.C., Corder K., Marshall S., Norman G.J., Patrick K., Sallis J.F., Elder J.P. An examination of multilevel factors that may explain gender differences in children’s physical activity. J. Phys. Act. Health. 2013;10:982–992.
    1. Laguna M., Ruiz J.R., Gallardo C., García-Pastor T., Lara M.-T., Aznar S. Obesity and physical activity patterns in children and adolescents. J. Paediatr. Child. Health. 2013;49:942–949. doi: 10.1111/jpc.12442.
    1. Riddoch C.J., Andersen L.B., Wedderkopp N., Harro M., Klasson-Heggebo L., Sardinha L.B., Cooper A.R., Ekelund U. Physical activity levels and patterns of 9- and 15-yr-old European children. Med. Sci. Sports Exerc. 2004;36:86–92. doi: 10.1249/01.MSS.0000106174.43932.92.
    1. Ferreira I., Van der Horst K., Wendel-Vos W., Kremers S., Van Lenthe F.J., Brug J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007;8:129–154. doi: 10.1111/j.1467-789X.2006.00264.x.
    1. Sallis J.F., Prochaska J.J., Taylor W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000;32:963–975. doi: 10.1097/00005768-200005000-00014.
    1. Gustafson S.L., Rhodes R.E. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36:79–97. doi: 10.2165/00007256-200636010-00006.
    1. Armstrong N., Welsman J.R. The physical activity patterns of european youth with reference to methods of assessment. Sports Med. 2006;36:1067–1086. doi: 10.2165/00007256-200636120-00005.
    1. Ferreira F.S., Mota J., Duarte J.A. Patterns of physical activity in portuguese adolescents. Evaluation during physical education classes through accelerometry. Arch. Exer. Health Dis. 2014;4:280–285.
    1. Beets M.W., Cardinal B.J., Alderman B.L. Parental social support and the physical activity-related behaviors of youth: A review. Health Educ. Behav. 2010;37:621–644. doi: 10.1177/1090198110363884.
    1. Ekstedt M., Nyberg G., Ingre M., Ekblom O., Marcus C. Sleep, physical activity and bmi in six to ten-year-old children measured by accelerometry: A cross-sectional study. Int J. Behav. Nutr. Phys. Act. 2013;10 doi: 10.1186/1479-5868-10-82.
    1. Committee on Environmental, H. Tester J.M. The built environment: Designing communities to promote physical activity in children. Pediatrics. 2009;123:1591–1598. doi: 10.1542/peds.2009-0750.
    1. Sallis J., Cervero R., Ascher W., Henderson K., Kraft M., Kerr J. An ecological approach to creating active living communities. Ann. Rev. Public Health. 2006;27:297–322. doi: 10.1146/annurev.publhealth.27.021405.102100.
    1. Nogueira H., Gama A., Marques V., Ferrão M., Padez C., Mourão I. The associations of ses, obesity, sport activity, and perceived neighborhood environments: Is there a model of environmental injustice penalizing portuguese children? Am. J. Hum. Biol. 2013;25:434–436. doi: 10.1002/ajhb.22384.
    1. Laxer R.E., Janssen I. The proportion of youths’ physical inactivity attributable to neighbourhood built environment features. Int. J. Health Geogr. 2013;12 doi: 10.1186/1476-072X-12-31.
    1. Katzmarzyk P., Barreira T., Broyles S., Champagne C., Chaput J.-P., Fogelholm M., Hu G., Johnson W., Kuriyan R., Kurpad A., et al. The international study of childhood obesity, lifestyle and the environment (ISCOLE): Design and methods. BMC Public Health. 2013;13 doi: 10.1186/1471-2458-13-900.
    1. AICEP . Portugal—Ficha País. aicep Portugal Global; Lisboa, Portugal: 2012.
    1. UN Development Programme (UNDP) Human Development Report 2013—The Rise of the South: Human Progress in a Diverse World. United Nations Development Programme; New York, NY, USA: 2013.
    1. UNICEF At A Glance: Portugal. [(accessed on 29 July 2013)]. Available online: .
    1. Fundação Francisco Manuel dos Santos. Pordata. [(accessed on 6 August 2013)]. Available online: .
    1. Associação Industrial Portuguesa . Cartas Regionais de Competitividade | Minho-Lima | Ave-Cávado | Tâmega | Grande Porto | Entre Douro e Vouga. Vol. II AIP; Lisboa, Portugal: 2011.
    1. de Onis M., Onyango A.W., Borghi E., Siyam A., Nishida C., Siekmann J. Development of a who growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007;85:660–667. doi: 10.2471/BLT.07.043497.
    1. Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694. doi: 10.1097/00005768-200204000-00020.
    1. Ekblom O., Nyberg G., Bak E.E., Ekelund U., Marcus C. Validity and comparability of a wrist-worn accelerometer in children. J. Phys. Act. Health. 2012;9:389–393.
    1. Mark A.E., Janssen I. Dose-response relation between physical activity and blood pressure in youth. Med. Sci. Sports Exerc. 2008;40:1007–1012. doi: 10.1249/MSS.0b013e318169032d.
    1. Tudor-Locke C., Barreira T.V., Schuna J.M., Jr., Mire E.F., Katzmarzyk P.T. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl. Physiol. Nutr. Metab. 2014;39:53–57. doi: 10.1139/apnm-2013-0173.
    1. Barreira T.V., Schuna Jr J.M., Mire E.F., Katzmarzyk P.T., Chaput J.-P., Leduc G., Tudor-Locke C. Distinguishing children’s nocturnal sleep using 24-hour waist accelerometry. Med. Sci. Sports Exerc. 2015 in press.
    1. Catellier D.J., Hannan P.J., Murray D.M., Addy C.L., Conway T.L., Yang S., Rice J.C. Imputation of missing data when measuring physical activity by accelerometry. Med. Sci. Sports Exerc. 2005;37:S555–S562. doi: 10.1249/01.mss.0000185651.59486.4e.
    1. Evenson K.R., Catellier D.J., Gill K., Ondrak K.S., McMurray R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008;26:1557–1565. doi: 10.1080/02640410802334196.
    1. Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011;43:1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. American academy of pediatrics: Children, adolescents, and television. Pediatrics. 2001;107:423–426.
    1. Coxe S., West S.G., Aiken L.S. The analysis of count data: A gentle introduction to poisson regression and its alternatives. J. Pers. Assess. 2009;91:121–136. doi: 10.1080/00223890802634175.
    1. Slymen D.J., Ayala G.X., Arredondo E.M., Elder J.P. A demonstration of modeling count data with an application to physical activity. Epidemiol. Perspect. Innov. 2006;3:3–9. doi: 10.1186/1742-5573-3-3.
    1. Long J.S., Freese J. Regression Models for Categorical Dependent Variables Using Stata. 2nd ed. StataCorp; College Station, TX, USA: 2006.
    1. Hintze J. NCSS9. [(accessed on 13 April 2014)]. Available online:
    1. Cameron A.C., Trivedi P.K. Regression Analysis of Count Data. Cambridge University Press; New York, NY, USA: 1998.
    1. Abramson J.H. Winpepi updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 2011;8 doi: 10.1186/1742-5573-8-1.
    1. Telford R.M., Telford R.D., Cunningham R.B., Cochrane T., Davey R., Waddington G. Longitudinal patterns of physical activity in children aged 8 to 12 years: The look study. Int. J. Behav. Nutr. Phys. Act. 2013;10:81–92. doi: 10.1186/1479-5868-10-81.
    1. Baptista F., Santos D.A., Silva A.M., Mota J., Santos R., Vale S., Ferreira J.P., Raimundo A.M., Moreira H., Sardinha L.B. Prevalence of the portuguese population attaining sufficient physical activity. Med. Sci. Sports Exerc. 2012;44:466–473. doi: 10.1249/MSS.0b013e318230e441.
    1. Verloigne M., De Bourdeaudhuij I., Van Lippevelde W., Maes L., Yildirim M., Chinapaw M., Manios Y., Androutsos O., Kovács T., Bringolf-Isler B., et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 european countries using accelerometers: An observational study within the energy-project. Int. J. Behav. Nutr. Phys. Act. 2012;9 doi: 10.1186/1479-5868-9-34.
    1. Fairclough S.J., Ridgers N.D., Welk G. Correlates of children’s moderate and vigorous physical activity during weekdays and weekends. J. Phys. Act. Health. 2012;9:129–137.
    1. Ramirez-Rico E., Hilland T.A., Foweather L., Fernandez-Garcia E., Fairclough S.J. Weekday and weekend patterns of physical activity and sedentary time among liverpool and madrid youth. Eur. J. Sport Sci. 2014;14:287–293. doi: 10.1080/17461391.2013.827242.
    1. Seabra A., Mendonça D., Maia J., Welk G., Brustad R., Fonseca A.M., Seabra A.F. Gender, weight status and socioeconomic differences in psychosocial correlates of physical activity in schoolchildren. J. Sci. Med. Sport. 2013;16:320–326. doi: 10.1016/j.jsams.2012.07.008.
    1. Blatchford P., Baines E., Pellegrini A. The social context of school playground games: Sex and ethnic differences, and changes over time after entry to junior school. Br. J. Dev. Psychol. 2003;21:481–505. doi: 10.1348/026151003322535183.
    1. Thompson A.M., Baxter-Jones A.D.G., Mirwald R.L., Bailey D.A. Comparison of physical activity in male and female children: Does maturation matter? Med. Sci. Sports Exerc. 2003;35:1684–1690. doi: 10.1249/01.MSS.0000089244.44914.1F.
    1. Bergh I.H., Grydeland M., Bjelland M., Lien N., Andersen L.F., Klepp K.I., Anderssen S.A., Ommundsen Y. Personal and social-environmental correlates of objectively measured physical activity in norwegian pre-adolescent children. Scand. J. Med. Sci. Sports. 2011;21:e315–e324. doi: 10.1111/j.1600-0838.2011.01295.x.
    1. Dorsey K.B., Herrin J., Krumholz H.M. Patterns of moderate and vigorous physical activity in obese and overweight compared with non-overweight children. Int. J. Pediatr. Obes. 2011;6:e547–e555. doi: 10.3109/17477166.2010.490586.
    1. Okely A.D., Booth M.L., Chey T. Relationships between body composition and fundamental movement skills among children and adolescents. Res. Q. Exerc. Sport. 2004;75:238–247. doi: 10.1080/02701367.2004.10609157.
    1. Suminski R., Ding D., Lee R., May L., Tota T., Dinius D. Youth physical activity opportunities in lower and higher income neighborhoods. J. Urban. Health. 2011;88:599–615. doi: 10.1007/s11524-011-9577-2.
    1. Oliveira A.F., Moreira C., Abreu S., Mota J., Santos R. Environmental determinants of physical activity in children: A systematic review. Arch. Exer. Health Dis. 2014;4:254–261.
    1. Tappe K.A., Glanz K., Sallis J.F., Chuan Z., Saelens B.E. Children’s physical activity and parents’ perception of the neighborhood environment: Neighborhood impact on kids study. Int. J. Behav. Nutr. Phys. Act. 2013;10:39–48. doi: 10.1186/1479-5868-10-39.
    1. Telama R., Xiaolin Y., Leskinen E., KankaanpÄÄ A., Hirvensalo M., Tammelin T., Viikari J.S., Raitakari O.T. Tracking of physical activity from early childhood through youth into adulthood. Med. Sci. Sports Exerc. 2014;46:955–962. doi: 10.1249/MSS.0000000000000181.
    1. Sallis J.F., Alcaraz J.E., McKenzie T.L., Hovell M.F., Kolody B., Nader P.R. Parental behavior in relation to physical activity and fitness in 9-year-old children. Am. J. Dis. Child. 1992:1383–1388.
    1. Soric M., Starc G., Borer K.T., Jurak G., Kovac M., Strel J., Misigoj-Durakovic M. Associations of objectively assessed sleep and physical activity in 11-year old children. Ann. Hum. Biol. 2015;42:31–37. doi: 10.3109/03014460.2014.928367.
    1. Williams S.M., Farmer V.L., Taylor B.J., Taylor R.W. Do more active children sleep more? A repeated cross-sectional analysis using accelerometry. PLoS One. 2014;9 doi: 10.1371/journal.pone.0093117.
    1. Pesonen A.K., Sjöstén N.M., Matthews K.A., Heinonen K., Martikainen S., Kajantie E., Tammelin T., Eriksson J.G., Strandberg T., Räikkönen K. Temporal associations between daytime physical activity and sleep in children. PLoS One. 2011;6 doi: 10.1371/journal.pone.0022958.
    1. Olds T., Ferrar K.E., Gomersall S.R., Maher C., Walters J.L. The elasticity of time: Associations between physical activity and use of time in adolescents. Health Educ. Behav. 2012;39:732–736. doi: 10.1177/1090198111429822.
    1. Landhuis C.E., Poulton R., Welch D., Hancox R.J. Childhood sleep time and long-term risk for obesity: A 32-year prospective birth cohort study. Pediatrics. 2008;122:955–960. doi: 10.1542/peds.2007-3521.
    1. Sardinha L.B., Silva A.M., Baptista F., Santos R., Vale S., Mota J., Ferreira J.P., Raimundo A.M., Moreira H. Prevalence of overweight and obesity among portuguese youth: A study in a representative sample of 10–18-year-old children and adolescents. Int J. Pediatr. Obes. 2011;6:e124–e128. doi: 10.3109/17477166.2010.490263.
    1. Brennan R.L. Generalizability Theory. Springer; New York, NY, USA: 2001.
    1. Duncan S.C., Duncan T.E., Strycker L.A. Sources and types of social support in youth physical activity. Health Psychol. 2005;24:3–10. doi: 10.1037/0278-6133.24.1.3.

Source: PubMed

3
Sottoscrivi