The effect of citrus flavonoid extract supplementation on anaerobic capacity in moderately trained athletes: a randomized controlled trial

Lieke E van Iersel, Yala R Stevens, Jose M Conchillo, Freddy J Troost, Lieke E van Iersel, Yala R Stevens, Jose M Conchillo, Freddy J Troost

Abstract

Background: Nutritional supplementation is commonly used by athletes to improve their exercise performance. Previous studies demonstrated that citrus flavonoid extract (CFE) supplementation may be an effective strategy to improve exercise performance in male athletes. Yet, no conclusive research has been performed to investigate the effect of chronic CFE supplementation on high-intensity exercise performance under anaerobic conditions. Therefore, the aim of the study was to assess whether CFE supplementation in daily dosages of 400 and 500 mg for a period of 4 and 8 weeks improves anaerobic exercise capacity.

Methods: A randomized, double-blind, placebo controlled, parallel clinical study was conducted in 92 moderately trained healthy men and women. Subjects were randomized to receive 400 mg of CFE (n = 30), 500 mg of CFE (n = 31) or placebo (n = 31) daily, for 8 consecutive weeks. The Wingate anaerobic test was used to assess anaerobic exercise capacity and power output at baseline, after 4 weeks and after 8 weeks.

Results: After 4 weeks supplementation, average power output significantly increased in the 400 mg group (Estimated difference [ED] = 38.2 W [18.0, 58.3]; p < 0.001; effect size [ES] = 0.27) and in the 500 mg group (ED = 21.2 W [0.91, 41.4]; p = 0.041; ES = 0.15) compared to placebo. The 5 s peak power output was also increased in the 400 mg group (ED = 53.6 [9.96, 97.2]; p = 0.017; ES = 0.25) after 4 weeks compared to placebo. After 8 weeks of supplementation, average power output was significantly improved in the group receiving 400 mg of CFE (ED = 31.6 [8.33, 54.8]; p = 0.008; ES = 0.22) compared to placebo.

Conclusion: These results demonstrate that CFE supplementation improved anaerobic capacity and peak power during high intensity exercise in moderately trained individuals. Further research is needed to identify the underlying mechanisms that are affected by CFE supplementation.

Trial registration: ClinicalTrials.gov ( NCT03044444 ). Registered 7 February 2017.

Keywords: Anaerobic capacity; Antioxidant; Hesperidin; Wingate anaerobic test.

Conflict of interest statement

LEVI is a former employee of BioActor BV. YRS is a current employee of BioActor BV. The funders had no role in the design of the manuscript, writing of the manuscript, or in the decision to publish the results.

Figures

Fig. 1
Fig. 1
Overview of the study design. CFE: citrus flavonoid extract. † Supplementation started after baseline measurements were completed
Fig. 2
Fig. 2
CONSORT (Consolidated Standards of Reporting Trials) flowchart of the study
Fig. 3
Fig. 3
Performance outcomes at baseline, after 4 weeks and after 8 weeks of supplementation. Values are presented as observed mean ± SD. Differences between the intervention groups and placebo group were compared with an unstructured linear mixed model with correction for baseline values. * p < 0.05. CFE: Citrus Flavonoid Extract

References

    1. Knapik JJ, Steelman RA, Hoedebecke SS, Austin KG, Farina EK, Lieberman HR. Prevalence of dietary supplement use by athletes: systematic review and meta-analysis. Sports Med. 2016;46:103–123. doi: 10.1007/s40279-015-0387-7.
    1. Cases J, Romain C, Marin-Pagan C, Chung LH, Rubio-Perez JM, Laurent C, et al. Supplementation with a polyphenol-rich extract, PerfLoad((R)), improves physical performance during high-intensity exercise: a randomized, double blind. Nutrients. 2017;9(4):421. 10.3390/nu9040421.
    1. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:–8.
    1. Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22:31–38. doi: 10.1080/0264041031000140536.
    1. Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:905612. doi: 10.1155/2010/905612.
    1. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–741.
    1. Gomez-Cabrera MC, Domenech E, Vina J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–131. doi: 10.1016/j.freeradbiomed.2007.02.001.
    1. Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. 2018;9:17181–17198. doi: 10.18632/oncotarget.24729.
    1. Rothschild JA, Bishop DJ. Effects of dietary supplements on adaptations to endurance training. Sports Med. 2020;50:25–53. doi: 10.1007/s40279-019-01185-8.
    1. Overdevest E, Wouters JA, Wolfs KHM, van Leeuwen JJM, Possemiers S. Citrus flavonoid supplementation improves exercise performance in trained athletes. J Sports Sci Med. 2018;17:24–30.
    1. Bowtell J, Kelly V. Fruit-derived polyphenol supplementation for athlete recovery and performance. Sports Med. 2019;49:3–23. doi: 10.1007/s40279-018-0998-x.
    1. Rizza S, Muniyappa R, Iantorno M. Kim J-a, Chen H, Pullikotil P, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. The J Clin Endocrinol Metab. 2011;96:E782–EE92. doi: 10.1210/jc.2010-2879.
    1. Bescos R, Sureda A, Tur JA, Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42:99–117. doi: 10.2165/11596860-000000000-00000.
    1. Martinez-Noguera FJ, Marin-Pagan C, Carlos-Vivas J, Rubio-Arias JA, Alcaraz PE. Acute effects of hesperidin in oxidant/antioxidant state markers and performance in amateur cyclists. Nutrients. 2019;11.
    1. Salden BN, Troost FJ, de Groot E, Stevens YR, Garces-Rimon M, Possemiers S, et al. Randomized clinical trial on the efficacy of hesperidin 2S on validated cardiovascular biomarkers in healthy overweight individuals. Am J Clin Nutr. 2016;104:1523–1533. doi: 10.3945/ajcn.116.136960.
    1. Zupan MF, Arata AW, Dawson LH, Wile AL, Payn TL, Hannon ME. Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res. 2009;23:2598–2604. doi: 10.1519/JSC.0b013e3181b1b21b.
    1. Evans JA, Quinney HA. Determination of resistance settings for anaerobic power testing. Can J Appl Sport Sci. 1981;6:53–56.
    1. Inbar O, Bar-Or O, Skinners IS. The Wingate anaerobic test. Champaign, IL: Human Kinetics; 1996.
    1. Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of Citrus juices. Molecules. 2007;12:1641–1673. doi: 10.3390/12081641.
    1. Stevens Y, Winkens B, Jonkers D, Masclee A. The effect of olive leaf extract on cardiovascular health markers: a randomized placebo-controlled clinical trial. Eur J Nutr. 2020.
    1. Davis JM, Carlstedt CJ, Chen S, Carmichael MD, Murphy EA. The dietary flavonoid quercetin increases VO(2max) and endurance capacity. Int J Sport Nutr Exerc Metab. 2010;20:56–62. doi: 10.1123/ijsnem.20.1.56.
    1. Deley G, Guillemet D, Allaert FA, Babault N. An acute dose of specific grape and apple polyphenols improves endurance performance: a randomized, crossover, double-blind versus placebo controlled study. Nutrients. 2017;9.
    1. Oh JK, Shin YO, Yoon JH, Kim SH, Shin HC, Hwang HJ. Effect of supplementation with Ecklonia cava polyphenol on endurance performance of college students. Int J Sport Nutr Exerc Metab. 2010;20:72–79. doi: 10.1123/ijsnem.20.1.72.
    1. Richards JC, Lonac MC, Johnson TK, Schweder MM, Bell C. Epigallocatechin-3-gallate increases maximal oxygen uptake in adult humans. Med Sci Sports Exerc. 2010;42:739–744. doi: 10.1249/MSS.0b013e3181bcab6c.
    1. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8:143–164. doi: 10.1016/j.hfc.2011.08.011.
    1. Bentley DJ, Ackerman J, Clifford T, Slattery KS. Acute and chronic effects of antioxidant supplementation on exercise performance. In: Lamprecht M, editor. Antioxidants in sport nutrition. Boca Raton, FL: CRC Press/Taylor & Francis; 2015.
    1. Liu L, Xu DM, Cheng YY. Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J Agric Food Chem. 2008;56:824–829. doi: 10.1021/jf0723007.
    1. Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005;53:4757–4761. doi: 10.1021/jf0502000.
    1. Estruel-Amades S, Massot-Cladera M, Garcia-Cerda P, Perez-Cano FJ, Franch A, Castell M, et al. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients. 2019;11.
    1. de Oliveira DM, Dourado GK, Cesar TB. Hesperidin associated with continuous and interval swimming improved biochemical and oxidative biomarkers in rats. J Int Soc Sports Nutri. 2013;10:27. doi: 10.1186/1550-2783-10-27.
    1. Biesemann N, Ried JS, Ding-Pfennigdorff D, Dietrich A, Rudolph C, Hahn S, et al. High throughput screening of mitochondrial bioenergetics in human differentiated myotubes identifies novel enhancers of muscle performance in aged mice. Sci Rep. 2018;8:9408. doi: 10.1038/s41598-018-27614-8.

Source: PubMed

3
Sottoscrivi