Myocardial mechano-energetic efficiency and insulin resistance in non-diabetic members of the Strong Heart Study cohort

Costantino Mancusi, Giovanni de Simone, Lyle G Best, Wenyu Wang, Ying Zhang, Mary J Roman, Elisa T Lee, Barbara V Howard, Richard B Devereux, Costantino Mancusi, Giovanni de Simone, Lyle G Best, Wenyu Wang, Ying Zhang, Mary J Roman, Elisa T Lee, Barbara V Howard, Richard B Devereux

Abstract

Background: Myocardial energetic efficiency (MEE), is a strong predictor of CV events in hypertensive patient and is reduced in patients with diabetes and metabolic syndrome. We hypothesized that severity of insulin resistance (by HOMA-IR) negatively influences MEE in participants from the Strong Heart Study (SHS).

Methods: We selected non-diabetic participants (n = 3128, 47 ± 17 years, 1807 women, 1447 obese, 870 hypertensive) free of cardiovascular (CV) disease, by merging two cohorts (Strong Heart Study and Strong Heart Family Study, age range 18-93). MEE was estimated as stroke work (SW = systolic blood pressure [SBP] × stroke volume [SV])/"double product" of SBP × heart rate (HR), as an estimate of O2 consumption, which can be simplified as SV/HR ratio and expressed in ml/sec. Due to the strong correlation, MEE was normalized by left ventricular (LV) mass (MEEi).

Results: Linear trend analyses showed that with increasing quartiles of HOMA-IR patients were older, more likely to be women, obese and hypertensive, with a trend toward a worse lipid profile (all p for trend < 0.001), progressive increase in LV mass index, stroke index and cardiac index and decline of wall mechanics (all p < 0.0001). In multivariable regression, after adjusting for confounders, and including a kinship coefficient to correct for relatedness, MEEi was negatively associated with HOMA-IR, independently of significant associations with age, sex, blood pressure, lipid profile and central obesity (all p < 0.0001).

Conclusions: Severity of insulin resistance has significant and independent negative impact on myocardial mechano-energetic efficiency in nondiabetic individual from a population study of American Indians. Trial registration number NCT00005134, Name of registry: Strong Heart Study, URL of registry: https://ichgcp.net/clinical-trials-registry/NCT00005134 , Date of registration: May 25, 2000, Date of enrolment of the first participant to the trial: September 1988.

Keywords: Cardiac function; Echocardiography; Myocardial metabolism; Stroke volume.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
LV geometry, systolic function and performance in quartiles of HOMA-IR
Fig. 2
Fig. 2
Least square means of MEEi for quartiles of HOMA-IR (insulin resistance), after adjusting for family relatedness, age, sex, obesity and hypertension. MEEi progressively decreases with increasing HOMA-IR
Fig. 3
Fig. 3
Pressure–volume loop with the indication of the different steps of cardiac cycle, starting with end-systolic volume and the lowest cavity pressure. Cardiac activity proceeds counterclockwise. Stroke work is the area of the loop than can be approximated as a dimensionless rectangle area with the basis represented by stroke volume and the height by peak-systolic pressure. The grey area is the potential energy developed

References

    1. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol. 1971;27(4):416–432. doi: 10.1016/0002-9149(71)90439-5.
    1. Bing RJ, Hammond MM, et al. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J. 1949;38(1):1–24. doi: 10.1016/0002-8703(49)90788-7.
    1. Suga H. Ventricular energetics. Physiol Rev. 1990;70(2):247–277. doi: 10.1152/physrev.1990.70.2.247.
    1. de Simone G, Chinali M, Galderisi M, Benincasa M, Girfoglio D, Botta I, D’Addeo G, de Divitiis O. Myocardial mechano-energetic efficiency in hypertensive adults. J Hypertens. 2009;27(3):650–655. doi: 10.1097/HJH.0b013e328320ab97.
    1. de Simone G, Izzo R, Losi MA, Stabile E, Rozza F, Canciello G, Mancusi C, Trimarco V, De Luca N, Trimarco B. Depressed myocardial energetic efficiency is associated with increased cardiovascular risk in hypertensive left ventricular hypertrophy. J Hypertens. 2016;34(9):1846–1853. doi: 10.1097/HJH.0000000000001007.
    1. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122. doi: 10.1186/s12933-018-0762-4.
    1. de Simone G, Wang W, Best LG, Yeh F, Izzo R, Mancusi C, Roman MJ, Lee ET, Howard BV, Devereux RB. Target organ damage and incident type 2 diabetes mellitus: the Strong Heart Study. Cardiovasc Diabetol. 2017;16(1):64. doi: 10.1186/s12933-017-0542-6.
    1. Howard BV, Lee ET, Cowan LD, Devereux RB, Galloway JM, Go OT, Howard WJ, Rhoades ER, Robbins DC, Sievers ML, et al. Rising tide of cardiovascular disease in American Indians. The Strong Heart Study. Circulation. 1999;99(18):2389–2395. doi: 10.1161/01.CIR.99.18.2389.
    1. Lee ET, Fabsitz R, Cowan LD, Le NA, Oopik AJ, Cucchiara AJ, Savage PJ, Howard BV. The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. Am J Epidemiol. 1990;136:1141–1155. doi: 10.1093/oxfordjournals.aje.a115757.
    1. Devereux RB, Roman MJ, de Simone G, O’Grady MJ, Paranicas M, Yeh JL, Fabsitz RR, Howard BV. Relations of left ventricular mass to demographic and hemodynamic variables in American Indians: the Strong Heart Study. Circulation. 1997;96(5):1416–1423. doi: 10.1161/01.CIR.96.5.1416.
    1. Ferrara LA, Capaldo B, Mancusi C, Lee ET, Howard BV, Devereux RB, de Simone G. Cardiometabolic risk in overweight subjects with or without relative fat-free mass deficiency: the Strong Heart Study. Nutr Metab Cardiovasc Dis. 2014;24(3):271–276. doi: 10.1016/j.numecd.2013.08.009.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and -cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–254. doi: 10.7326/0003-4819-145-4-200608150-00004.
    1. de Simone G, Kizer JR, Chinali M, Roman MJ, Bella JN, Best LG, Lee ET, Devereux RB. Normalization for body size and population-attributable risk of left ventricular hypertrophy: the Strong Heart Study. Am J Hypertens. 2005;18(2):191–196. doi: 10.1016/j.amjhyper.2004.08.032.
    1. de Simone G, Izzo R, Aurigemma GP, De Marco M, Rozza F, Trimarco V, Stabile E, De Luca N, Trimarco B. Cardiovascular risk in relation to a new classification of hypertensive left ventricular geometric abnormalities. J Hypertens. 2015;33(4):745–754. doi: 10.1097/HJH.0000000000000477.
    1. De Marco M, Gerdts E, Mancusi C, Roman MJ, Lonnebakken MT, Lee ET, Howard BV, Devereux RB, de Simone G. Influence of left ventricular stroke volume on incident heart failure in a population with preserved ejection fraction (from the strong heart study) Am J Cardiol. 2017;119(7):1047–1052. doi: 10.1016/j.amjcard.2016.12.011.
    1. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation. 1996;93(2):259–265. doi: 10.1161/01.CIR.93.2.259.
    1. Wang W, Lee ET, Howard BV, Fabsitz RR, Devereux RB, MacCluer JW, Laston S, Comuzzie AG, Shara NM, Welty TK. Models of population-based analyses for data collected from large extended families. Eur J Epidemiol. 2010;25(12):855–865. doi: 10.1007/s10654-010-9512-y.
    1. De Marco M, de Simone G, Roman MJ, Chinali M, Lee ET, Calhoun D, Howard BV, Devereux RB. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults: the Strong Heart Study. Diabetes Care. 2011;34(10):2300–2305. doi: 10.2337/dc11-0191.
    1. Mancusi C, Losi MA, Izzo R, Canciello G, Manzi MV, Sforza A, De Luca N, Trimarco B, de Simone G. Effect of diabetes and metabolic syndrome on myocardial mechano-energetic efficiency in hypertensive patients. The Campania Salute Network. J Hum Hypertens. 2017;31(6):395–399. doi: 10.1038/jhh.2016.88.
    1. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–258. doi: 10.1152/physrev.00015.2009.
    1. Hinkle PC. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 2005;1706(1–2):1–11.
    1. Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011;90(2):202–209. doi: 10.1093/cvr/cvr038.
    1. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–441. doi: 10.2337/diabetes.52.2.434.
    1. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53(9):2366–2374. doi: 10.2337/diabetes.53.9.2366.
    1. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55(2):466–473. doi: 10.2337/diabetes.55.02.06.db05-1164.
    1. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805–812. doi: 10.1016/j.cmet.2012.04.006.
    1. Shah A, Shannon RP. Insulin resistance in dilated cardiomyopathy. Rev Cardiovasc Med. 2003;4(Suppl 6):S50–S57.
    1. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112(17):2686–2695. doi: 10.1161/CIRCULATIONAHA.105.554360.
    1. Ross J, Jr, Braunwald E. The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation. 1964;29:739–749. doi: 10.1161/01.CIR.29.5.739.
    1. Westerhof N. Cardiac work and efficiency. Cardiovasc Res. 2000;48(1):4–7. doi: 10.1016/S0008-6363(00)00176-0.
    1. Indolfi C, Ross J., Jr The role of heart rate in myocardial ischemia and infarction: implications of myocardial perfusion-contraction matching. Prog Cardiovasc Dis. 1993;36(1):61–74. doi: 10.1016/0033-0620(93)90022-6.
    1. Vanoverschelde JL, Wijns W, Essamri B, Bol A, Robert A, Labar D, Cogneau M, Michel C, Melin JA. Hemodynamic and mechanical determinants of myocardial O2 consumption in normal human heart: effects of dobutamine. Am J Physiol. 1993;265(6 Pt 2):H1884–H1892.
    1. Yasumura Y, Nozawa T, Futaki S, Tanaka N, Goto Y, Suga H. Dissociation of pressure-rate product from myocardial oxygen consumption in dog. Jpn J Physiol. 1987;37(4):657–670. doi: 10.2170/jjphysiol.37.657.
    1. Haidet GC, Musch TI, Ordway GA, Mitchell JH. Exercise, dobutamine, and combined atropine, norepinephrine, and epinephrine compared. J Appl Physiol. 1985;58(6):2047–2053. doi: 10.1152/jappl.1985.58.6.2047.
    1. Akinboboye OO, Reichek N, Bergmann SR, Chou RL. Correlates of myocardial oxygen demand measured by positron emission tomography in the hypertrophied left ventricle. Am J Hypertens. 2003;16(3):240–243. doi: 10.1016/S0895-7061(02)03252-1.
    1. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–2196. doi: 10.1161/01.CIR.0000127959.28627.F8.
    1. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47(3):598–604. doi: 10.1016/j.jacc.2005.09.030.
    1. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51(2):93–102. doi: 10.1016/j.jacc.2007.10.021.
    1. Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. JAMA. 2005;294(3):334–341. doi: 10.1001/jama.294.3.334.
    1. de Simone G, Devereux RB, Chinali M, Lee ET, Galloway JM, Barac A, Panza JA, Howard BV. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens. 2010;28(2):353–360. doi: 10.1097/HJH.0b013e3283331169.
    1. de Simone G, Devereux RB, Roman MJ, Chinali M, Barac A, Panza JA, Lee ET, Galloway JM, Howard BV. Does cardiovascular phenotype explain the association between diabetes and incident heart failure? The Strong Heart Study. Nutr Metab Cardiovasc Dis. 2013;23(4):285–291. doi: 10.1016/j.numecd.2011.06.007.
    1. Ganau A, Devereux RB, Pickering TG, Roman MJ, Schnall PL, Santucci S, Spitzer MC, Laragh JH. Relation of left ventricular hemodynamic load and contractile performance to left ventricular mass in hypertension [see comments] Circulation. 1990;81(1):25–36. doi: 10.1161/01.CIR.81.1.25.
    1. Park J, Kim JS, Kim SH, Kim S, Lim SY, Lim HE, Cho GY, Sung KC, Kim JY, Baik I, et al. Subclinical left ventricular diastolic dysfunction and incident type 2 diabetes risk: the Korean Genome and Epidemiology Study. Cardiovasc Diabetol. 2017;16(1):36. doi: 10.1186/s12933-017-0519-5.
    1. Won KB, Park GM, Lee SE, Cho IJ, Kim HC, Lee BK, Chang HJ. Relationship of insulin resistance estimated by triglyceride glucose index to arterial stiffness. Lipids Health Dis. 2018;17(1):268. doi: 10.1186/s12944-018-0914-2.

Source: PubMed

3
Sottoscrivi