Tolerogenic Dendritic Cells and T-Regulatory Cells at the Clinical Trials Crossroad for the Treatment of Autoimmune Disease; Emphasis on Type 1 Diabetes Therapy

Brett Eugene Phillips, Yesica Garciafigueroa, Carl Engman, Massimo Trucco, Nick Giannoukakis, Brett Eugene Phillips, Yesica Garciafigueroa, Carl Engman, Massimo Trucco, Nick Giannoukakis

Abstract

Tolerogenic dendritic cells and T-regulatory cells are two immune cell populations with the potential to prevent the onset of clinical stage type 1 diabetes, and manage the beginning of underlying autoimmunity, at the time-at-onset and onwards. Initial phase I trials demonstrated that the administration of a number of these cell populations, generated ex vivo from peripheral blood leukocytes, was safe. Outcomes of some of these trials also suggested some level of autoimmunity regulation, by the increase in the numbers of regulatory cells at different points in a network of immune regulation in vivo. As these cell populations come to the cusp of pivotal phase II efficacy trials, a number of questions still need to be addressed. At least one mechanism of action needs to be verified as operational, and through this mechanism biomarkers predictive of the underlying autoimmunity need to be identified. Efficacy in the regulation of the underlying autoimmunity also need to be monitored. At the same time, the absence of a common phenotype core among the different dendritic cell and T-regulatory cell populations, that have completed phase I and early phase II trials, necessitates a better understanding of what makes these cells tolerogenic, especially if a uniform phenotypic core cannot be identified. Finally, the inter-relationship of tolerogenic dendritic cells and T-regulatory cells for survival, induction, and maintenance of a tolerogenic state that manages the underlying diabetes autoimmunity, raises the possibility to co-administer, or even to serially-administer tolerogenic dendritic cells together with T-regulatory cells as a cellular co-therapy, enabling the best possible outcome. This is currently a knowledge gap that this review aims to address.

Trial registration: ClinicalTrials.gov NCT00445913 NCT02354911.

Keywords: T-regulatory cells; autoimmunity; clinical trials; immunotherapy; tolerogenic dendritic cells; type 1 diabetes.

Figures

Figure 1
Figure 1
A simplified schematic of DC and Treg interactions. (A) immature mDC secrete anti-inflammatory cytokines inhibiting Teff activation and driving Th2 differentiation. Pattern recognition receptor (PPR)-dependent maturation of mDC increase expression of *-labeled molecules required for Teff primary and secondary activation. Changes in cytokine expression profiles further drive Teff activation and tip the Th balance toward Th1 cells. (B) treg can block Teff activation directly or through indirect interactions with mature DC. Treg also preferential sequester the T-cell proliferation factor IL-2 due to high constitutive IL-2R (CD25) expression. (C) pDC/Treg interactions stabilize and convert Teff to Treg populations in lymph nodes under steady state conditions.

References

    1. Lo J, Clare-Salzler MJ. Dendritic cell subsets and type I diabetes: focus upon DC-based therapy. Autoimmun Rev. (2006) 5:419–23. 10.1016/j.autrev.2005.12.001
    1. Diabetes Control and Complications Trial Research Group. Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, et al. . The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. (1993) 329:977–86.
    1. George CM, Byun A, Howard-Thompson A. New injectable agents for the treatment of type 2 diabetes part 1 - injectable insulins. Am J Med. (2018) 131:752–4. 10.1016/j.amjmed.2018.01.049
    1. Heinemann L, Beals JM, Malone J, Anderson J, Jacobson JG, Sinha V, et al. . Concentrated insulins: history and critical reappraisal. J Diabetes (2018). 10.1111/1753-0407.1286. [Epub ahead of print].
    1. Klonoff DC, Ahn D, Drincic A. Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res Clin Pract. (2017) 133:178–92. 10.1016/j.diabres.2017.08.005
    1. Lopes M, Simões S, Veiga F, Seiça R, Ribeiro A. Why most oral insulin formulations do not reach clinical trials. Ther Deliv. (2015) 6:973–87. 10.4155/TDE.15.47
    1. Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. (2018) 537:223–44. 10.1016/j.ijpharm.2017.12.036
    1. Senior PA, Pettus JH. Stem cell therapies for Type 1 diabetes: current status and proposed road map to guide successful clinical trials. Diabet Med. (2018). 10.1111/dme.13846. [Epub ahead of print].
    1. Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. (2017) 13:268–77. 10.1038/nrendo.2016.178
    1. Matsumoto S. Clinical allogeneic and autologous islet cell transplantation: update. Diabetes Metab J. (2011) 35:199–206. 10.4093/dmj.2011.35.3.199
    1. Park CG, Bottino R, Hawthorne WJ. Current status of islet xenotransplantation. Int J Surg. (2015) 23(Pt B): 261–6. 10.1016/j.ijsu.2015.07.703
    1. Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry RA., et al. . Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. (2017) 76: 227–234. 10.1136/annrheumdis-2015-208456
    1. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N., et al. . Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med. (2015) 7:290ra87. 10.1126/scitranslmed.aaa9301
    1. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care (2011) 34:2026–32. 10.2337/dc11-0472
    1. Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C., et al. . Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory crohn's disease: a phase i study. J Crohns colitis (2015) 9:1071–8. 10.1093/ecco-jcc/jjv144
    1. Battaglia M, Gregori S, Bacchetta R, Roncarolo MG. Tr1 cells: from discovery to their clinical application. Semin Immunol. (2006) 18:120–7. 10.1016/j.smim.2006.01.007
    1. Di Caro V, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS ONE (2014) 9: e83575. 10.1371/journal.pone.0083575
    1. Vigouroux S, Yvon E, Biagi E, Brenner MK. Antigen-induced regulatory T cells. Blood (2004) 104:26–33. 10.1182/blood-2004-01-0182
    1. Zeng H, Zhang R, Jin B, Chen L. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol. (2015) 12:566–71. 10.1038/cmi.2015.44
    1. Phillips BE, Garciafigueroa Y, Trucco M, Giannoukakis N. Clinical tolerogenic dendritic cells: exploring therapeutic impact on human autoimmune disease. Front Immunol. (2017) 8:1279 10.3389/fimmu.2017.01279
    1. Banchereau J, Fay J, Pascual V, Palucka AK. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Novartis Found Symp. (2003) 252:226–35. Discussion 235–8, 257–67. 10.1002/0470871628.ch17
    1. Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. (2008) 19:41–52. 10.1016/j.cytogfr.2007.10.004
    1. Kuwana M. Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol. (2002) 63:1156–63. 10.1016/S0198-8859(02)00754-1
    1. Kuwana M, Kaburaki J, Wright TM, Kawakami Y, Ikeda Y. Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur J Immunol. (2001) 31:2547–57. 10.1002/1521-4141(200109)31:9<2547::AID-IMMU2547>;2-J
    1. Liang X, Ma L, Thai NL, Fung JJ, Qian S, Lu L. The role of liver-derived regulatory dendritic cells in prevention of type 1 diabetes. Immunology (2007) 120:251–60. 10.1111/j.1365-2567.2006.02496.x
    1. Peng R, Li Y, Brezner K, Litherland S, Clare-Salzler MJ. Abnormal peripheral blood dendritic cell populations in type 1 diabetes. Ann N Y Acad Sci. (2003) 1005:222–5. 10.1196/annals.1288.031
    1. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity (2003) 18:605–17. 10.1016/S1074-7613(03)00113-4
    1. Young JW, Merad M, Hart DN. Dendritic cells in transplantation and immune-based therapies. Biol Blood Marrow Transplant. (2007) 13(1 Suppl. 1):23–32. 10.1016/j.bbmt.2006.10.023
    1. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. (2010) 10:664–74. 10.1038/nri2832
    1. Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, von Delwig A., et al. . LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukoc Biol. (2009) 85:243–50. 10.1189/jlb.0608374.
    1. Dánová K, Klapetková A, Kayserová J, Šedivá A, Špíšek R, Jelínková LP. NF-kappaB, p38 MAPK, ERK1/2, mTOR, STAT3 and increased glycolysis regulate stability of paricalcitol/dexamethasone-generated tolerogenic dendritic cells in the inflammatory environment. Oncotarget (2015) 6:14123–38. 10.18632/oncotarget.4234
    1. Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis. (2010) 69:2042–50. 10.1136/ard.2009.126383
    1. Veldhoen M, Moncrieffe H, Hocking RJ, Atkins CJ, Stockinger B. Modulation of dendritic cell function by naive and regulatory CD4+ T cells. J Immunol. (2006) 176:6202–10. 10.4049/jimmunol.176.10.6202
    1. Lim DS, Kang MS, Jeong JA, Bae YS. Semi-mature DC are immunogenic and not tolerogenic when inoculated at a high dose in collagen-induced arthritis mice. Eur J Immunol. (2009) 39:1334–43. 10.1002/eji.200838987
    1. Voigtländer C, Rössner S, Cierpka E, Theiner G, Wiethe C, Menges M., et al. . Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J Immunother. (2006) 29:407–15. 10.1097/01.cji.0000210081.60178.b4
    1. Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol. (2011) 23:252–63. 10.1016/j.smim.2011.06.007
    1. Moreau A, Varey E, Bériou G, Hill M, Bouchet-Delbos L, Segovia M., et al. . Tolerogenic dendritic cells and negative vaccination in transplantation: from rodents to clinical trials. Front Immunol. (2012) 3:218. 10.3389/fimmu.2012.00218
    1. Silva Pde M, Bier J, Paiatto LN, Galdino Albuquerque C, Lopes Souza C, Fernandes LG., et al. . Tolerogenic dendritic cells on transplantation: immunotherapy based on second signal blockage. J Immunol Res. (2015) 2015:856707. 10.1155/2015/856707
    1. Thomson AW, Robbins PD. Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann Rheum Dis. (2008) 67(Suppl. 3):iii90–6. 10.1136/ard.2008.099176
    1. Llanos C, Mackern-Oberti JP, Vega F, Jacobelli SH, Kalergis AM. Tolerogenic dendritic cells as a therapy for treating lupus. Clin Immunol. (2013) 148:237–45. 10.1016/j.clim.2013.04.017
    1. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. (2009) 1:a001651. 10.1101/cshperspect.a001651
    1. Martin E, O'Sullivan B, Low P, Thomas R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity (2003) 18:155–67. 10.1016/S1074-7613(02)00503-4
    1. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. (1998) 188:2175–80. 10.1084/jem.188.11.2175
    1. Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol. (2014) 5:7. 10.3389/fimmu.2014.00007
    1. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE., et al. . Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. (1999) 162:6473–81.
    1. Rea D, van Kooten C, van Meijgaarden KE, Ottenhoff TH, Melief CJ, Offringa R. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood (2000) 95:3162–7.
    1. Széles L, Keresztes G, Töröcsik D, Balajthy Z, Krenács L, Póliska S., et al. . 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. (2009) 182:2074–83. 10.4049/jimmunol.0803345
    1. Corinti S, Albanesi C, la Sala A, Pastore S, Girolomoni G. Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol. (2001) 166:4312–8. 10.4049/jimmunol.166.7.4312
    1. Aranow C. Vitamin D and the immune system. J Investig Med. (2011) 59:881–6. 10.2310/JIM.0b013e31821b8755
    1. Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by vitamin D. Nutrients (2015) 7:8127–51. 10.3390/nu7095383
    1. Cabezón R, Ricart E, España C, Panés J, Benitez-Ribas D. Gram-negative enterobacteria induce tolerogenic maturation in dexamethasone conditioned dendritic cells. PLoS ONE (2012) 7:e52456. 10.1371/journal.pone.0052456
    1. Lu L, Qian S, Hershberger P, Rudert WA, Li Y, Chambers FG., et al. . Blocking of the B7-CD28 pathway increases apoptosis induced in activated T cells by in vitro-generated CD95L (FasL) positive dendritic cells. Transplant Proc. (1997) 29:1094–5.
    1. Lu L, Qian S, Hershberger PA, Rudert WA, Lynch DH, Thomson AW. Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J Immunol. (1997) 158:5676–84.
    1. Lu L, Qian S, Starzl TE, Lynch DH, Thomson AW. Blocking of the B7-CD28 pathway increases the capacity of FasL+ (CD95L+) dendritic cells to kill alloactivated T cells. Adv Exp Med Biol. (1997) 417:275–82. 10.1007/978-1-4757-9966-8_45
    1. Di Caro V, D'Anneo A, Phillips B, Engman C, Harnaha J, Trucco M, et al. , Phosphatidylinositol-3-kinase activity during in vitro dendritic cell generation determines suppressive or stimulatory capacity. Immunol Res. (2011) 50:130–52. 10.1007/s12026-011-8206-1
    1. Funda DP, Goliáš J, Hudcovic T, Kozáková H, Špíšek R, Palová-Jelínková L. Antigen loading (e.g., Glutamic Acid Decarboxylase 65) of Tolerogenic DCs (tolDCs) reduces their capacity to prevent diabetes in the Non-Obese Diabetes (NOD)-severe combined immunodeficiency model of adoptive cotransfer of diabetes as well as in NOD mice. Front Immunol. (2018) 9:290. 10.3389/fimmu.2018.00290
    1. Lo J, Xia CQ, Peng R, Clare-Salzler MJ. Immature dendritic cell therapy confers durable immune modulation in an antigen-dependent and antigen-independent manner in nonobese diabetic mice. J Immunol Res. (2018) 2018:5463879. 10.1155/2018/5463879
    1. Morel PA, Turner MS. Dendritic cells and the maintenance of self-tolerance. Immunol Res. (2011) 50:124–9. 10.1007/s12026-011-8217-y
    1. Raptopoulou A, Sidiropoulos P, Katsouraki M, Boumpas DT. Anti-citrulline antibodies in the diagnosis and prognosis of rheumatoid arthritis: evolving concepts. Crit Rev Clin Lab Sci. (2007) 44:339–63. 10.1080/10408360701295623
    1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet (2016) 388:2023–38. 10.1016/S0140-6736(16)30173-8
    1. Brooks-Worrell B, Gersuk VH, Greenbaum C, Palmer JP. Intermolecular antigen spreading occurs during the preclinical period of human type 1 diabetes. J Immunol. (2001) 166:5265–70. 10.4049/jimmunol.166.8.5265
    1. Phillips BE, Giannoukakis N, Trucco M. Dendritic cell mediated therapy for immunoregulation of type 1 diabetes mellitus. Pediatr Endocrinol Rev. (2008) 5:873–9.
    1. Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes (2005) 54(Suppl. 2): S52–61. 10.2337/diabetes.54.suppl_2.S52
    1. Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med. (2012) 2:a007781. 10.1101/cshperspect.a007781
    1. Catron DM, Rusch LK, Hataye J, Itano AA, Jenkins MK. CD4+ T cells that enter the draining lymph nodes after antigen injection participate in the primary response and become central-memory cells. J Exp Med. (2006) 203:1045–54. 10.1084/jem.20051954
    1. Di Caro V, Phillips B, Engman C, Harnaha J, Trucco M, Giannoukakis N. Retinoic acid-producing, ex-vivo-generated human tolerogenic dendritic cells induce the proliferation of immunosuppressive B lymphocytes. Clin Exp Immunol. (2013) 174:302–17. 10.1111/cei.12177
    1. Lord P, Spiering R, Aguillon JC, Anderson AE, Appel S, Benitez-Ribas D., et al. . Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ. (2016) 4:e2300. 10.7717/peerj.2300
    1. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S., et al. . CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. (2006) 203:1701–11. 10.1084/jem.20060772
    1. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A., et al. . Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med. (2006) 203:1693–700. 10.1084/jem.20060468
    1. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P., et al. . Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. (2013) 19:739–46. 10.1038/nm.3179
    1. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE., et al. . A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature (1997) 389:737–42.
    1. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res. (2007) 13(15 Pt 1):4345–54. 10.1158/1078-0432.CCR-07-0472
    1. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. (2003) 4:1206–12. 10.1038/ni1003
    1. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK., et al. . Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. (2015) 7:315ra189. 10.1126/scitranslmed.aad4134
    1. Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Techmanska I, Juscinska J., et al. . Administration of CD4+CD25highCD127- regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care (2012) 35:1817–20. 10.2337/dc12-0038
    1. Marek-Trzonkowska N, Myśliwiec M, Iwaszkiewicz-Grześ D, Gliwinski M, Derkowska I, Zalinska M., et al. . Factors affecting long-term efficacy of T regulatory cell-based therapy in type 1 diabetes. J Transl Med. (2016) 14:332. 10.1186/s12967-016-1090-7
    1. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juścinska J., et al. . Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin Immunol. (2014) 153:23–30. 10.1016/j.clim.2014.03.016
    1. Todd JA, Evangelou M, Cutler AJ, Pekalski ML, Walker NM, Stevens HE., et al. . Regulatory T cell responses in participants with type 1 diabetes after a single dose of Interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. (2016) 13:e1002139. 10.1371/journal.pmed.1002139
    1. Hotta-Iwamura C, Benck C, Coley WD, Liu Y, Zhao Y, Quiel JA., et al. . Low CD25 on autoreactive Tregs impairs tolerance via low dose IL-2 and antigen delivery. J Autoimmun. (2018) 90:39–48. 10.1016/j.jaut.2018.01.00
    1. Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M., et al. . Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J Immunol. (2006) 176:4590–9. 10.4049/jimmunol.176.8.4590
    1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature (1998) 392:245–52. 10.1038/32588
    1. Morell AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. (2007) 7:610–21. 10.1038/nri2132
    1. Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. (2014) 33:1104–16. 10.1002/embj.201488027
    1. Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med. (2005) 202:203–7. 10.1084/jem.20050810
    1. Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. (2006) 6:476–83. 10.1038/nri1845
    1. Kubach J, Becker C, Schmitt E, Steinbrink K, Huter E, Tuettenberg A., et al. . Dendritic cells: sentinels of immunity and tolerance. Int J Hematol. (2005) 81:197–203. 10.1532/IJH97.04165
    1. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell (2001) 106:259–62. 10.1016/S0092-8674(01)00456-1
    1. Liu YJ, Kanzler H, Soumelis V, Gilliet M. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol. (2001) 2:585–9. 10.1038/89726
    1. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF., et al. . Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood (2010) 116:935–44. 10.1182/blood-2009-07-234872
    1. Comi M, Amodio G, Gregori S. Interleukin-10-Producing DC-10 Is a Unique tool to promote tolerance via antigen-specific T regulatory type 1 cells. Front Immunol. (2018) 9:682. 10.3389/fimmu.2018.00682

Source: PubMed

3
Sottoscrivi