Somatosensory Modulation of Salivary Gene Expression and Oral Feeding in Preterm Infants: Randomized Controlled Trial

Steven Michael Barlow, Jill Lamanna Maron, Gil Alterovitz, Dongli Song, Bernard Joseph Wilson, Priya Jegatheesan, Balaji Govindaswami, Jaehoon Lee, Austin Oder Rosner, Steven Michael Barlow, Jill Lamanna Maron, Gil Alterovitz, Dongli Song, Bernard Joseph Wilson, Priya Jegatheesan, Balaji Govindaswami, Jaehoon Lee, Austin Oder Rosner

Abstract

Background: Despite numerous medical advances in the care of at-risk preterm neonates, oral feeding still represents one of the first and most advanced neurological challenges facing this delicate population. Objective, quantitative, and noninvasive assessment tools, as well as neurotherapeutic strategies, are greatly needed in order to improve feeding and developmental outcomes. Pulsed pneumatic orocutaneous stimulation has been shown to improve nonnutritive sucking (NNS) skills in preterm infants who exhibit delayed or disordered nipple feeding behaviors. Separately, the study of the salivary transcriptome in neonates has helped identify biomarkers directly linked to successful neonatal oral feeding behavior. The combination of noninvasive treatment strategies and transcriptomic analysis represents an integrative approach to oral feeding in which rapid technological advances and personalized transcriptomics can safely and noninvasively be brought to the bedside to inform medical care decisions and improve care and outcomes.

Objective: The study aimed to conduct a multicenter randomized control trial (RCT) to combine molecular and behavioral methods in an experimental conceptualization approach to map the effects of PULSED somatosensory stimulation on salivary gene expression in the context of the acquisition of oral feeding habits in high-risk human neonates. The aims of this study represent the first attempt to combine noninvasive treatment strategies and transcriptomic assessments of high-risk extremely preterm infants (EPI) to (1) improve oral feeding behavior and skills, (2) further our understanding of the gene ontology of biologically diverse pathways related to oral feeding, (3) use gene expression data to personalize neonatal care and individualize treatment strategies and timing interventions, and (4) improve long-term developmental outcomes.

Methods: A total of 180 extremely preterm infants from three neonatal intensive care units (NICUs) will be randomized to receive either PULSED or SHAM (non-pulsing) orocutaneous intervention simultaneous with tube feedings 3 times per day for 4 weeks, beginning at 30 weeks postconceptional age. Infants will also be assessed 3 times per week for NNS performance, and multiple saliva samples will be obtained each week for transcriptomic analysis, until infants have achieved full oral feeding status. At 18 months corrected age (CA), infants will undergo neurodevelopmental follow-up testing, the results of which will be correlated with feeding outcomes in the neo-and post-natal period and with gene expression data and intervention status.

Results: The ongoing National Institutes of Health funded randomized controlled trial R01HD086088 is actively recruiting participants. The expected completion date of the study is 2021.

Conclusions: Differential salivary gene expression profiles in response to orosensory entrainment intervention are expected to lead to the development of individualized interventions for the diagnosis and management of oral feeding in preterm infants.

Trial registration: ClinicalTrials.gov NCT02696343; https://ichgcp.net/clinical-trials-registry/NCT02696343 (Archived by WebCite at http://www.webcitation.org/6r5NbJ9Ym).

Keywords: brain; gene expression; mechanoreceptors; mouth; preterm infants.

Conflict of interest statement

Conflicts of Interest: None declared.

©Steven Michael Barlow, Jill Lamanna Maron, Gil Alterovitz, Dongli Song, Bernard Joseph Wilson, Priya Jegatheesan, Balaji Govindaswami, Jaehoon Lee, Austin Oder Rosner. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 14.06.2017.

Figures

Figure 1
Figure 1
Somatosensory intervention plan for stratified populations of Extremely Premature Infants along with the salivary sampling protocol and digitized measurements of nonnutritive suck progression is shown below, with primary (salivary gene expression, time to attain oral feeds, and nonnutritive suck pattern formation) and secondary (National Institute of Child Human Development Neonatal Research Network feeding-growth questionnaire and Bayley III screener at the neonatal intensive care unit follow-up) outcome variables listed as well.
Figure 2
Figure 2
Preterm infant receiving PULSED NTrainer stimulation during gavage feeding in the neonatal intensive care unit, with a nasogastric tube placed through the left nares (not visible); pneumatic stimulus control signals and output through the pacifier nipple are shown in the left panel: (a) voltage-controller gate signal, (b) intraluminal pressure (inside) the nipple, and (c) mechanical displacement at the nipple cylinder wall (Photo courtesy of Innara Health, Inc., Olathe, Kansas USA).

References

    1. Delaney A, Arvedson J. Development of swallowing and feeding: prenatal through first year of life. Dev Disabil Res Rev. 2008;14:105–17.
    1. Lau C, Alagugurusamy R, Schanler R, Smith E, Shulman R. Characterization of the developmental stages of sucking in preterm infants during bottle feeding. Acta Paediatr. 2000;89:846–52.
    1. King B. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87:221–4.
    1. Maron J, Hwang J, Pathak S, Ruthazer R, Russell R, Alterovitz G. Computational gene expression modeling identifies salivary biomarkers that predict oral feeding readiness in the newborn. J Pediatr. 2015;166:282–8.e5.
    1. Panksepp J. Hypothalamic regulation of energy balance and feeding behavior. Fed Proc. 1974;33(5):1150–65.
    1. Schaal B. Mammary odor cues and pheromones: mammalian infant-directed communication about maternal state, mammae, and milk. Vitam Horm. 2010;83:83–136.
    1. Verhagen J, Engelen L. The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev. 2006;30:613–50.
    1. Martin JA, Osterman MJK, Sutton PD. Are preterm births on the decline in the United States? recent data from the national vital statistics system. NCHS Data Brief. 2010;(39):1–8.
    1. da Costa SP, van der Schans CP, Zweens MJ, Boelema SR, van der Meij E, Boerman MA, Bos AF. Development of sucking patterns in pre-term infants with bronchopulmonary dysplasia. Neonatology. 2010;98(3):268–77. doi: 10.1159/000281106.
    1. Gewolb IH, Bosma JF, Reynolds EW, Vice FL. Integration of suck and swallow rhythms during feeding in preterm infants with and without bronchopulmonary dysplasia. Dev Med Child Neurol. 2003 May;45(5):344–8.
    1. Gewolb I, Bosma J, Taciak V, Vice F. Abnormal developmental patterns of suck and swallow rhythms during feeding in infants with bronchopulmonary dysplasia. Dev Med Child Neurol. 2001;43(7):454–9.
    1. Howe T, Sheu C, Holzman IR. Bottle-feeding behaviors in preterm infants with and without bronchopulmonary dysplasia. Am J Occup Ther. 2007;61(4):378–83.
    1. Martin-Harris B. Clinical implications of respiratory-swallowing interactions. Curr Opin Otolaryngol Head Neck Surg. 2008 Jun;16(3):194–9. doi: 10.1097/MOO.0b013e3282febd4b.
    1. Mizuno K, Nishida Y, Taki M, Hibino S, Murase M, Sakurai M, Itabashi K. Infants with bronchopulmonary dysplasia suckle with weak pressures to maintain breathing during feeding. Pediatrics. 2007 Oct;120(4):e1035–42. doi: 10.1542/peds.2006-3567.
    1. Lau C. Oral feeding in the preterm infant. NeoReviews. 2006 Jan;7(1):e19–e27. doi: 10.1542/neo.7-1-e19.
    1. Mizuno K, Ueda A. Neonatal feeding performance as a predictor of neurodevelopmental outcome at 18 months. Dev Med Child Neurol. 2005 May;47(5):299–304.
    1. Samara M, Johnson S, Lamberts K, Marlow N, Wolke D. Eating problems at age 6 years in a whole population sample of extremely preterm children. Dev Med Child Neurol. 2010 Feb;52(2):e16–22. doi: 10.1111/j.1469-8749.2009.03512.x. doi: 10.1111/j.1469-8749.2009.03512.x.
    1. Wilson L, Oliva-Hemker M. Percutaneous endoscopic gastrostomy in small medically complex infants. Endoscopy. 2001;33:433–6.
    1. Bingham PM, Ashikaga T, Abbasi S. Relationship of neonatal oral motor assessment scale to feeding performance of premature infants. J Neonatal Nurs. 2012 Feb 01;18(1):30–6. doi: 10.1016/j.jnn.2010.09.004.
    1. Da CS, van der Schans CP. The reliability of the neonatal oral-motor assessment scale. Acta Paediatr. 2008;97:21–6.
    1. Howe T, Lin K, Fu C, Su C, Hsieh C. A review of psychometric properties of feeding assessment tools used in neonates. J Obstet Gynecol Neonatal Nurs. 2008;37(3):338–49. doi: 10.1111/j.1552-6909.2008.00240.x.
    1. Palmer M, Crawley K, Blanco I. Neonatal oral-motor assessment scale: a reliability study. J Perinat. 1993;13:28–35.
    1. Crowe L, Chang A, Wallace K. Instruments for assessing readiness to commence suck feeds in preterm infants: effects on time to establish full oral feeding and duration of hospitalisation. Cochrane Database Syst Rev. 2012;(4):CD005586.
    1. McCain GC, Gartside PS, Greenberg JM, Lott JW. A feeding protocol for healthy preterm infants that shortens time to oral feeding. J Pediatr. 2001 Sep;139(3):374–9. doi: 10.1067/mpd.2001.117077.
    1. Muraskas J, Parsi K. The cost of saving the tiniest lives: NICUs versus prevention. Virtual Mentor. 2008 Oct 01;10(10):655–8. doi: 10.1001/virtualmentor.2008.10.10.pfor1-0810.
    1. Barlow SM, Finan DS, Rowland SG. Mechanically evoked perioral reflexes in infants. Brain Res. 1992 Dec 18;599(1):158–60.
    1. Barlow SM, Finan DS, Bradford PT, Andreatta RD. Transitional properties of the mechanically evoked perioral reflex from infancy through adulthood. Brain Res. 1993 Oct 01;623(2):181–8.
    1. Barlow S, Dusick A, Finan D, Biswas A, Coltart S, Flaherty K. Neurophysiological monitoring of the orofacial system in premature and term infants. J Med Speech-Language Path. 2000;8(4):221–38.
    1. Barlow SM, Dusick A, Finan DS, Coltart S, Biswas A. Mechanically evoked perioral reflexes in premature and term human infants. Brain Res. 2001 Apr 27;899(1-2):251–4.
    1. Finan DS, Barlow SM. The actifier: a device for neurophysiological studies of orofacial control in human infants. J Speech Hear Res. 1996 Aug;39(4):833–8.
    1. Finan DS, Barlow SM. Intrinsic dynamics and mechanosensory modulation of non-nutritive sucking in human infants. Early Hum Dev. 1998 Sep;52(2):181–97.
    1. Romano-Keeler J, Wynn JL, Maron JL. Great expectorations: the potential of salivary 'omic' approaches in neonatal intensive care. J Perinatol. 2014 Mar;34(3):169–73. doi: 10.1038/jp.2013.170.
    1. Wong D. Salivaomics. J Am Dent Assoc S. 2012;143:19–24.
    1. Maron JL, Johnson KL, Rocke DM, Cohen MG, Liley AJ, Bianchi DW. Neonatal salivary analysis reveals global developmental gene expression changes in the premature infant. Clin Chem. 2010 Mar;56(3):409–16. doi: 10.1373/clinchem.2009.136234.
    1. Maron JL, Johnson KL, Dietz JA, Chen ML, Bianchi DW. Neuropeptide Y2 receptor (NPY2R) expression in saliva predicts feeding immaturity in the premature neonate. PLoS One. 2012;7(5):e37870. doi: 10.1371/journal.pone.0037870.
    1. Belford G, Killackey H. The sensitive period in the development of the trigeminal system of the neonatal rat. J Comp Neurol. 1980;193(2):335–50.
    1. Durham D, Woolsey TA. Effects of neonatal whisker lesions on mouse central trigeminal pathways. J Comp Neurol. 1984 Mar 01;223(3):424–47. doi: 10.1002/cne.902230308.
    1. Eldawlatly S, Oweiss K. Temporal precision in population-but not individual neuron-dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex. Front Comput Neurosci. 2014;8:1–9.
    1. Erzurumlu RS, Gaspar P. Development and critical period plasticity of the barrel cortex. Eur J Neurosci. 2012 May;35(10):1540–53. doi: 10.1111/j.1460-9568.2012.08075.x.
    1. Erzurumlu R, Murakami Y, Rijli F. Mapping the face in the somatosensory brainstem. Nat Rev Neurosci. 2010;11(4):252–63.
    1. Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science. 2005 Nov 04;310(5749):810–5. doi: 10.1126/science.1115807.
    1. Feldman D, Nicoll RA, Malenka RC. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol. 1999;41(1):92–101.
    1. Margolis DJ, Lütcke H, Helmchen F. Microcircuit dynamics of map plasticity in barrel cortex. Curr Opin Neurobiol. 2014 Feb;24(1):76–81. doi: 10.1016/j.conb.2013.08.019.
    1. Petersen CC. The functional organization of the barrel cortex. Neuron. 2007 Oct 25;56(2):339–55. doi: 10.1016/j.neuron.2007.09.017.
    1. Buonomano D, Merzenich M. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–86.
    1. Killackey H, Fleming K. The role of the principal sensory nucleus in central trigeminal pattern formation. Brain Res. 1985;354(1):141–5.
    1. Sehara K, Kawasaki H. Neuronal circuits with whisker-related patterns. Mol Neurobiol. 2011;43:155–62.
    1. Inan M, Crair M. Development of cortical maps: perspectives from the barrel cortex. Neuroscientist. 2007;13(1):49–61.
    1. Fox K. Barrel Cortex. Cambridge, UK: Cambridge University Press; 2008.
    1. Fox K, Wong R. A comparison of experience-dependent plasticity in the visual and somatosensory systems. Neuron. 2005;48(3):465–77.
    1. Citri A, Malenka R. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33(1):18–41.
    1. Johnston M, Ishida A, Ishida W, Matsushita H, Nishimura A, Tsuji M. Plasticity and injury in the developing brain. Brain Dev. 2009;31(1):1–10.
    1. Erzurumlu R, Killackey H. Critical and sensitive periods in neurobiology. Curr Top Dev Biol. 1982;17:207–40.
    1. Vallès A, Boender A, Gijsbers S, Haast R, Martens G, de Weerd P. Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. J Neurosci. 2011;31(16):6140–58.
    1. Vallès A, Granic I, De Weerd P, Martens GJ. Molecular correlates of cortical network modulation by long-term sensory experience in the adult rat barrel cortex. Learn Mem. 2014 Jun;21(6):305–10. doi: 10.1101/lm.034827.114.
    1. Barlow S, Lee J, Wang J, Oder A, Oh H, Hall S, Knox K, Weatherstone K, Thompson D. The effects of oral stimulus frequency spectra on the development of non-nutritive suck in preterm infants with respiratory distress syndrome or chronic lung disease, and preterm infants of diabetic mothers. J Neonat Nurs. 2014;20(4):178–88.
    1. Barlow SM, Burch M, Venkatesan L, Harold M, Zimmerman E. Frequency modulation and spatiotemporal stability of the sCPG in preterm infants with RDS. Int J Pediatr. 2012;2012:581538. doi: 10.1155/2012/581538. doi: 10.1155/2012/581538.
    1. Barlow SM, Finan DS, Lee J, Chu S. Synthetic orocutaneous stimulation entrains preterm infants with feeding difficulties to suck. J Perinatol. 2008 Aug;28(8):541–8. doi: 10.1038/jp.2008.57.
    1. Barlow SM, Lee J, Wang J, Oder A, Hall S, Knox K, Weatherstone K, Thompson D. Frequency-modulated orocutaneous stimulation promotes non-nutritive suck development in preterm infants with respiratory distress syndrome or chronic lung disease. J Perinatol. 2014 Feb;34(2):136–42. doi: 10.1038/jp.2013.149.
    1. Estep M, Barlow SM, Vantipalli R, Finan D, Lee J. Non-nutritive suck parameter in preterm infants with RDS. J Neonatal Nurs. 2008 Feb;14(1):28–34. doi: 10.1016/j.jnn.2007.12.005.
    1. Poore M, Barlow SM, Wang J, Estep M, Lee J. Respiratory treatment history predicts suck pattern stability in preterm infants. J Neonatal Nurs. 2008 Dec;14(6):185–92. doi: 10.1016/j.jnn.2008.07.006.
    1. Poore M, Zimmerman E, Barlow SM, Wang J, Gu F. Patterned orocutaneous therapy improves sucking and oral feeding in preterm infants. Acta Paediatr. 2008 Jul;97(7):920–7. doi: 10.1111/j.1651-2227.2008.00825.x.
    1. Stumm S, Barlow SM, Estep M, Lee J, Cannon S, Carlson J, Finan D. Respiratory distress syndrome degrades the fine structure of the non-nutritive suck in preterm infants. J Neonatal Nurs. 2008;14(1):9–16. doi: 10.1016/j.jnn.2007.11.001.
    1. Ludwig S, Waitzman KA. Changing feeding documentation to reflect infant driven feeding practice. Newborn Infant Nurs Rev. 2007;7:155–60. doi: 10.1053/j.nainr.2007.06.007.
    1. Waitzman K, Ludwig S, Nelson C. Contributing to content validity of the infant-driven feeding scales© through Delphi surveys. Newborn Infant Nurs Rev. 2014;14(3):88–91. doi: 10.1053/j.nainr.2014.06.010.
    1. Dietz J, Johnson K, Wick H, Bianchi D, Maron J. Optimal techniques for mRNA extraction from neonatal salivary supernatant. Neonatology. 2012;101(1):55–60.
    1. Maron J. Insights into neonatal oral feeding through the salivary transcriptome. Int J Pediatr. 2012;2012:195153. doi: 10.1155/2012/195153.
    1. Bustin S, Benes B, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M, Shipley G, Vandesompele J, Witter C. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. doi: 10.1373/clinchem.2008.112797.
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.
    1. Bayley N. Bayley Scales of Infant and Toddler Development, 3rd edition. San Antonio, TX: PsychCorp; 2006.
    1. Adams-Chapman I, Bann C, Vaucher Y, Stoll B, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network Association between feeding difficulties and language delay in preterm infants using Bayley scales of infant development-third edition. J Pediatr. 2013;163(3):680–5. doi: 10.1016/j.jpeds.2013.03.006.
    1. SAS/STAT 9.4 user's guide. Cary, NC: SAS; 2012.
    1. Alterovtiz G, Tuthill C, Rios I, Modelska K, Sonis S. Personalized medicine for mucositis: Bayesian networks identify unique gene clusters which predict the response to gamma D- glutamyl-L tryptophan (SCV-07) for the attenuation of chemoradiation-induced oral mucositis. Oral Oncol. 2011;47(10):951–5. doi: 10.1016/j.oraloncology.2011.07.006.
    1. Wilkinson DJ. Bayesian methods in bioinformatics and computational systems biology. Brief Bioinform. 2007 Mar;8(2):109–16. doi: 10.1093/bib/bbm007.
    1. Markowetz F, Spang R. Inferring cellular networks--a review. BMC Bioinformatics. 2007 Sep 27;8(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5.

Source: PubMed

3
Sottoscrivi