Population Modelling of Dexmedetomidine Pharmacokinetics and Haemodynamic Effects After Intravenous and Subcutaneous Administration

Muhammad W Ashraf, Panu Uusalo, Mika Scheinin, Teijo I Saari, Muhammad W Ashraf, Panu Uusalo, Mika Scheinin, Teijo I Saari

Abstract

Background and objective: Dexmedetomidine is a potent agonist of α2-adrenoceptors causing dose-dependent sedation in humans. Intravenous dexmedetomidine is commonly used perioperatively, but an extravascular route of administration would be favoured in palliative care. Subcutaneous infusions provide desired therapeutic plasma concentrations with fewer unwanted effects as compared with intravenous dosing. We aimed to develop semi-mechanistic population models for predicting pharmacokinetic and pharmacodynamic profiles of dexmedetomidine after intravenous and subcutaneous dosing.

Methods: Non-linear mixed-effects modelling was performed using previously collected concentration and haemodynamic effects data from ten (eight in the intravenous phase) healthy human subjects, aged 19-27 years, receiving 1 µg/kg of intravenous or subcutaneous dexmedetomidine during a 10-min infusion.

Results: The absorption of dexmedetomidine from the subcutaneous injection site, and distribution to local subcutaneous fat tissue was modelled using a semi-physiological approach consisting of a depot and fat compartment, while a two-compartment mammillary model explained further disposition. Dexmedetomidine-induced reductions in plasma norepinephrine concentrations were accurately described by an indirect response model. For blood pressure models, the net effect was specified as hyper- and hypotensive effects of dexmedetomidine due to vasoconstriction on peripheral arteries and sympatholysis mediated via the central nervous system, respectively. A heart rate model combined the dexmedetomidine-induced sympatholytic effect, and input from the central nervous system, predicted from arterial blood pressure levels. Internal evaluation confirmed the predictive performance of the final models, as well as the accuracy of the parameter estimates with narrow confidence intervals.

Conclusions: Our final model precisely describes dexmedetomidine pharmacokinetics and accurately predicts dexmedetomidine-induced sympatholysis and other pharmacodynamic effects. After subcutaneous dosing, dexmedetomidine is taken up into subcutaneous fat tissue, but our simulations indicate that accumulation of dexmedetomidine in this compartment is insignificant. CLINICALTRIALS.ORG: NCT02724098 and EudraCT 2015-004698-34.

Conflict of interest statement

MWA, PU and TIS received a speaker honorarium from Orion Pharma Ltd (Espoo, Finland). MS had contract research relationships with Orion Corporation Ltd (Espoo, Finland), Novartis Pharma (Espoo, Finland), Desentum Ltd (Helsinki, Finland), Gabather AB (Gothenburg, Sweden), AbbVie AG (Germany) and AC Immune SA (Lausanne, Switzerland). In addition, MS has received fees for participation on Data and Safety Committees in Faron Pharmaceuticals (Turku, Finland) and Herantis Pharma (Helsinki, Finland). MS has received a speaker’s fee from Pharma Industry Finland (Helsinki, Finland) and he has stock options for Santhera Pharmaceuticals (Pratteln, Switzerland).

Figures

Fig. 1
Fig. 1
Schematic of the final semi-mechanistic model for dexmedetomidine pharmacokinetics (a), its effect on norepinephrine (NE) release (b), systolic and diastolic blood pressures (c), and heart rate (d). A amount, C1 dexmedetomidine concentration on central compartment, CE amount of (heart rate/systolic or diastolic blood pressure), CNS central nervous system, EC effect compartment, EC50 concentration causing 50% effect from EMAX, EMAX maximum effect, Fspill fraction on NE spilled out from the release compartment, HPN hypotension, HR heart rate, HTN hypertension, I(t) dosing event, IV intravenous, k1e, k5e and k7e rate constants for distribution to the effect compartment, kIN,R rate constant for NE release, ka absorption rate constant, ke0 elimination rate constant for the effect, kOUT,P rate constant for NE elimination from the plasma, P plasma, R release, SC subcutaneous, γ hill parameter
Fig. 2
Fig. 2
Visual predictive checks based on 1000 simulations showing dexmedetomidine and norepinephrine after a 1-µg/kg intravenous (a, c) or subcutaneous (b, d) dexmedetomidine infusion. The black solid and dashed lines are the observed percentiles (10th, 50th and 90th percentiles) respectively, and the blue ribbon is the corresponding median predictive interval. Light blue ribbons are predicted percentiles. Black circles are individual observations
Fig. 3
Fig. 3
Visual predictive checks based on 1000 simulations showing heart rate (upper row), systolic blood pressure (middle row) and diastolic blood pressure (lower row) after a 1-µg/kg intravenous (a, c, e) or subcutaneous (b, d, f) dexmedetomidine infusion. The black solid and dashed lines are the observed percentiles (10th, 50th, and 90th percentiles), respectively, and the blue ribbon is the corresponding median predictive interval. Light blue ribbons are predicted percentiles. Black circles are individual observations
Fig. 4
Fig. 4
Simulated dexmedetomidine concentration profiles in plasma using the final mechanism-based model and 8-h (upper row) and 48-h (lower row) intravenous (a, c) and subcutaneous (b, d) continuous infusions of varying dexmedetomidine doses
Fig. 5
Fig. 5
Simulated norepinephrine concentration profiles in plasma using the final mechanism-based model and 8-h (upper row) and 48-h (lower row) intravenous (a, c) and subcutaneous (b, d) continuous infusions of varying dexmedetomidine doses

References

    1. Bodnar J. A review of agents for palliative sedation/continuous deep sedation: pharmacology and practical applications. J Pain Palliat Care Pharmacother. 2017;31:16–37. doi: 10.1080/15360288.2017.1279502.
    1. Garetto F, Cancelli F, Rossi R, Maltoni M. Palliative sedation for the terminally ill patient. CNS Drugs. 2018;32:951–961. doi: 10.1007/s40263-018-0576-7.
    1. Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;26:335–346.
    1. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–436. doi: 10.1097/00000542-200302000-00024.
    1. Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–182. doi: 10.1093/bja/aev226.
    1. Uusalo P, Al-Ramahi D, Tilli I, Aantaa RA, Scheinin M, Saari TI. Subcutaneously administered dexmedetomidine is efficiently absorbed and is associated with attenuated cardiovascular effects in healthy volunteers. Eur J Clin Pharmacol. 2018;74:1047–1054. doi: 10.1007/s00228-018-2461-1.
    1. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–394. doi: 10.1097/00000542-200008000-00016.
    1. Lodenius Å, Ebberyd A, Hårdemark Cedborg A, Hagel E, Mkrtchian S, Christensson E, et al. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: a nonblinded, randomized crossover study. Anesthesiology. 2016;125:700–715. doi: 10.1097/ALN.0000000000001236.
    1. Yoo H, Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, et al. Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects. Eur J Clin Pharmacol. 2015;71:1197–1207. doi: 10.1007/s00228-015-1913-0.
    1. Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation. Br J Anaesth. 2017;119:200–210. doi: 10.1093/bja/aex085.
    1. Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119:211–220. doi: 10.1093/bja/aex086.
    1. Li A, Yuen VM, Goulay-Dufaÿ S, Sheng Y, Standing JF, Kwok PCL, et al. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br J Anaesth. 2018;120:960–968. doi: 10.1016/j.bja.2017.11.100.
    1. Talke P, Anderson BJ. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br J Clin Pharmacol. 2018;84:1364–1372. doi: 10.1111/bcp.13571.
    1. Pérez-Guillé M-G, Toledo-López A, Rivera-Espinosa L, Alemon-Medina R, Murata C, Lares-Asseff I, et al. Population pharmacokinetics and pharmacodynamics of dexmedetomidine in children undergoing ambulatory surgery. Anesth Analg. 2018;127(3):716–723. doi: 10.1213/ANE.0000000000003413.
    1. Greenberg RG, Wu H, Laughon M, Capparelli E, Rowe S, Zimmerman KO, et al. Population pharmacokinetics of dexmedetomidine in infants. J Clin Pharmacol. 2017;57:1174–1182. doi: 10.1002/jcph.904.
    1. Liu H-C, Lian Q-Q, Wu F-F, Wang C-Y, Sun W, Zheng L-D, et al. Population pharmacokinetics of dexmedetomidine after short intravenous infusion in Chinese children. Eur J Drug Metab Pharmacokinet. 2017;42:201–211. doi: 10.1007/s13318-016-0333-6.
    1. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108:460–468. doi: 10.1093/bja/aer441.
    1. Välitalo PA, Ahtola-Sätilä T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Investig. 2013;33:579–587. doi: 10.1007/s40261-013-0101-1.
    1. Ji QC, Zhou JY, Gonzales RJ, Gage EM, El-Shourbagy TA. Simultaneous quantitation of dexmedetomidine and glucuronide metabolites (G-Dex-1 and G-Dex-2) in human plasma utilizing liquid chromatography with tandem mass spectrometric detection. Rapid Commun Mass Spectrom. 2004;18:1753–1760. doi: 10.1002/rcm.1548.
    1. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. NONMEM 7.4.3 users guides (1989-2018). Hanover, MD: ICON Development Solutions; 2018.
    1. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN): a Perl module for NONMEM related programming. Comput Methods Progr Biomed. 2004;75:85–94. doi: 10.1016/j.cmpb.2003.11.003.
    1. R Core Team. The R Project for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. . Accessed 10 May 2020.
    1. Frechen S, Junge L, Saari TI, Suleiman AA, Rokitta D, Neuvonen PJ, et al. A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3A by voriconazole. Clin Pharmacokinet. 2013;52:763–781. doi: 10.1007/s40262-013-0070-9.
    1. Ashraf MW, Peltoniemi MA, Olkkola KT, Neuvonen PJ, Saari TI. Semimechanistic population pharmacokinetic model to predict the drug-drug interaction between S-ketamine and ticlopidine in healthy human volunteers. CPT Pharmacomet Syst Pharmacol. 2018;7:687–697. doi: 10.1002/psp4.12346.
    1. Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109. doi: 10.1002/psp4.12161.
    1. Dosne A-G, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43:583–596. doi: 10.1007/s10928-016-9487-8.
    1. Acharya C, Hooker AC, Türkyılmaz GY, Jönsson S, Karlsson MO. A diagnostic tool for population models using non-compartmental analysis: the ncappc package for R. Comput Methods Progr Biomed. 2016;127:83–93. doi: 10.1016/j.cmpb.2016.01.013.
    1. Linares OA, Jacquez JA, Zech LA, Smith MJ, Sanfield JA, Morrow LA, et al. Norepinephrine metabolism in humans: kinetic analysis and model. J Clin Investig. 1987;80:1332–1341. doi: 10.1172/JCI113210.
    1. European Medicines Agency: EMEA/H/C/002268 - Dexdor: EPAR - Product Information. 2020. . Accessed 10 May 2020.
    1. Flexman AM, Wong H, Riggs KW, Shih T, Garcia PA, Vacas S, et al. Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology. 2014;120:1118–1125. doi: 10.1097/ALN.0000000000000141.
    1. Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, et al. Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol. 2011;67:825–831. doi: 10.1007/s00228-011-1002-y.
    1. Uusalo P, Guillaume S, Siren S, Manner T, Vilo S, Scheinin M, et al. Pharmacokinetics and sedative effects of intranasal dexmedetomidine in ambulatory pediatric patients. Anesth Analg. 2020;130:949–957. doi: 10.1213/ANE.0000000000004264.
    1. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21:457–478. doi: 10.1007/BF01061691.
    1. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–1142. doi: 10.1097/00000542-199212000-00014.
    1. Dyck JB, Maze M, Haack C, Vuorilehto L, Shafer SL. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:813–820. doi: 10.1097/00000542-199305000-00002.
    1. Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamäki O, et al. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther. 1989;46:33–42. doi: 10.1038/clpt.1989.103.
    1. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273:803–805. doi: 10.1126/science.273.5276.803.
    1. Talke P, Stapelfeldt C, Lobo E, Brown R, Scheinin M, Snapir A. Effect of alpha2B-adrenoceptor polymorphism on peripheral vasoconstriction in healthy volunteers. Anesthesiology. 2005;102:536–542. doi: 10.1097/00000542-200503000-00010.
    1. Talke P, Lobo E, Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99:65–70. doi: 10.1097/00000542-200307000-00014.

Source: PubMed

3
Sottoscrivi