An Integrated eDiagnosis Approach (IeDA) versus standard IMCI for assessing and managing childhood illness in Burkina Faso: a stepped-wedge cluster randomised trial

Sophie Sarrassat, James J Lewis, Arsene S Some, Serge Somda, Simon Cousens, Karl Blanchet, Sophie Sarrassat, James J Lewis, Arsene S Some, Serge Somda, Simon Cousens, Karl Blanchet

Abstract

Background: The Integrated eDiagnosis Approach (IeDA), centred on an electronic Clinical Decision Support System (eCDSS) developed in line with national Integrated Management of Childhood Illness (IMCI) guidelines, was implemented in primary health facilities of two regions of Burkina Faso. An evaluation was performed using a stepped-wedge cluster randomised design with the aim of determining whether the IeDA intervention increased Health Care Workers' (HCW) adherence to the IMCI guidelines.

Methods: Ten randomly selected facilities per district were visited at each step by two trained nurses: One observed under-five consultations and the second conducted a repeat consultation. The primary outcomes were: overall adherence to clinical assessment tasks; overall correct classification ignoring the severity of the classifications; and overall correct prescription according to HCWs' classifications. Statistical comparisons between trial arms were performed on cluster/step-level summaries.

Results: On average, 54 and 79% of clinical assessment tasks were observed to be completed by HCWs in the control and intervention districts respectively (cluster-level mean difference = 29.9%; P-value = 0.002). The proportion of children for whom the validation nurses and the HCWs recorded the same classifications (ignoring the severity) was 73 and 79% in the control and intervention districts respectively (cluster-level mean difference = 10.1%; P-value = 0.004). The proportion of children who received correct prescriptions in accordance with HCWs' classifications were similar across arms, 78% in the control arm and 77% in the intervention arm (cluster-level mean difference = - 1.1%; P-value = 0.788).

Conclusion: The IeDA intervention improved substantially HCWs' adherence to IMCI's clinical assessment tasks, leading to some overall increase in correct classifications but to no overall improvement in correct prescriptions. The largest improvements tended to be observed for less common conditions. For more common conditions, HCWs in the control districts performed relatively well, thus limiting the scope to detect an overall impact.

Trial registration: ClinicalTrials.gov NCT02341469 ; First submitted August 272,014, posted January 19, 2015.

Keywords: Burkina Faso; Electronic clinical decision support system; Health care workers’ adherence; Integrated Management of Childhood Illness.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Eight health districts included in the trial. Blue and red circles indicate control and intervention districts respectively. Source: Burkina Faso, Map No. 4230, November 2004, UNITED NATIONS
Fig. 2
Fig. 2
a Stepped-wedge design: planned roll-out of the IeDA intervention. b Stepped-wedge design: actual roll-out of the IeDA intervention. Districts shaded in dark green had full implementation of the IeDA intervention. Districts shaded in light green had partial implementation of the IeDA intervention (“contaminated” control districts)
Fig. 3
Fig. 3
Trial flow diagram (number of consultations of children aged 2 to 60 months). * Eight districts randomised but only 4 actually received the IeDA intervention

References

    1. Kruger C, Heinzel-Gutenbrunner M, Ali M. Adherence to the integrated management of childhood illness guidelines in Namibia, Kenya, Tanzania and Uganda: evidence from the national service provision assessment surveys. BMC Health Serc Res. 2017;17:822. doi: 10.1186/s12913-017-2781-3.
    1. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, Adeyi O, Barker P, Daelmans B, Doubova SV, English M, Elorrio EG, Guanais F, Gureje O, Hirschhorn LR, Jiang L, Kelley E, Lemango ET, Liljestrand J, Malata A, Marchant T, Matsoso MP, Meara JG, Mohanan M, Ndiaye Y, Norheim OF, Reddy KS, Rowe AK, Salomon JA, Thapa G, Twum-Danso NAY, Pate M. High-quality health systems in the sustainable development goals era: time for a revolution. Lancet Glob Health. 2018;6(11):Pe1196–Pe1252. doi: 10.1016/S2214-109X(18)30386-3.
    1. Bryce J, Victora CG, Habicht JP, Black RE, Scherpbier RW. Programmatic pathways to child survival: results of a multi-country evaluation of integrated Management of Childhood Illness. Health Policy Plan. 2005;20(Suppl 1):i5–17. doi: 10.1093/heapol/czi055.
    1. Pariyo GW, Gouws E, Bryce J, Burnham G. Improving facility-based care for sick children in Uganda: training is not enough. Health Policy Plan. 2005;20(Suppl 1):i58–i68. doi: 10.1093/heapol/czi051.
    1. Huicho L, Davila M, Campos M, et al. Scaling up integrated management of childhood illness to the national level: achievements and challenges in Peru. Health Policy Plan. 2005;20(1):14–24. doi: 10.1093/heapol/czi002.
    1. Mushi HP, Mullei K, Macha J, Wafula F, Borghi J, Goodman C, Gilson L. The challenges of achieving high training coverage for IMCI: case studies from Kenya and Tanzania. Health Policy Plan. 2011;26(5):395–404. doi: 10.1093/heapol/czq068.
    1. Kouanda S, Baguiya A. Evaluation de la qualité des soins prodigués aux enfants de moins de cinq ans dans les formations sanitaires des régions du Nord et de Centre-Nord du Burkina Faso. Ministère de la Santé; 2012.
    1. Gurman TA, Rubin SE, Roess AA. Effectiveness of mHealth behavior change communication interventions in developing countries: a systematic review of the literature. J Health Commun. 2012;17(Suppl 1):82–104. doi: 10.1080/10810730.2011.649160.
    1. Kallander K, Tibenderana JK, Akpogheneta OJ, et al. Mobile health (mHealth) approaches and lessons for increased performance and retention of community health workers in low- and middle-income countries: a review. J Med Internet Res. 2013;15(1):e17. doi: 10.2196/jmir.2130.
    1. Aranda-Jan CB, Mohutsiwa-Dibe N, Loukanova S. Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC Public Health. 2014;14(1):188. doi: 10.1186/1471-2458-14-188.
    1. Hall CS, Fottrell E, Wilkinson S, Byass P. Assessing the impact of mHealth interventions in low- and middle-income countries – what has been shown to work? Glob Health Action. 2014;7(1):25606. doi: 10.3402/gha.v7.25606.
    1. Chib A, van Velthoven MH, Car J. mHealth adoption in low-resource environments: a review of the use of mobile healthcare in developing countries. J Health Commun. 2015;20(1):4–34. doi: 10.1080/10810730.2013.864735.
    1. Mitchell M, Getchell M, Nkaka M, Msellemu D, van Esch J, Hedt-Gauthier B. Perceived improvement in integrated management of childhood illness implementation through use of mobile technology: qualitative evidence from a pilot study in Tanzania. J Health Commun. 2012;17(Suppl 1):118–127. doi: 10.1080/10810730.2011.649105.
    1. Mitchell M, Hedt-Gauthier BL, Msellemu D, Nkaka M, Lesh N. Using electronic technology to improve clinical care – results from a before-after cluster trial to evaluate assessment and classifications of sick children according to integrated Management of Childhood Illness (IMCI) protocol in Tanzania. BMC Med Inform Decis Mak. 2013;13(1):95. doi: 10.1186/1472-6947-13-95.
    1. Shao AF, Rambaud-Althaus C, Samaka J, Faustine AF, Perri-Moore S, Swai N, Kahama-Maro J, Mitchell M, Genton B, D’Acremont V. New algorithm for managing childhood illness using Mobile technology (ALMANACH): a controlled non-inferiority study on clinical outcome and antibiotic use in Tanzania. PLoS One. 2015;10(7):e0132316. doi: 10.1371/journal.pone.0132316.
    1. Ginsburg AS, Tawiah Agyemang C, Ambler G, et al. mPneumonia, an innovation for diagnosing and treating childhood pneumonia in low-resource settings: a feasibility, Usability and Acceptability Study in Ghana. PLoS One. 2016;11:e0165201. doi: 10.1371/journal.pone.0165201.
    1. Bernasconi A, Crabbé F, Raab M, et al. Can the use of digital algorithms improve quality of care? An example from Afghanistan. PLoS One. 2018;13:e0207233. doi: 10.1371/journal.pone.0207233.
    1. You D, Hug L, Ejdemyr S, Idele P, Hogan D, Mathers C, Gerland P, New JR, Alkema L. Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN inter-agency Group for Child Mortality Estimation. Lancet. 2015;386(10010):2275–2286. doi: 10.1016/S0140-6736(15)00120-8.
    1. Ministère de la Santé, Direction Générale des Études et des Statistiques Sectorielles. Enquête nationale sur les prestations des services de santé et la qualité des données sanitaires (EN-PSQD/SARA II). 2014, Ouagadougou, Burkina Faso. Available from:
    1. Ridde V, Yaméogo P. How Burkina Faso used evidence in deciding to lauch its policy of free healthcare for children under five and women in 2016. Palgrave Communications. 2018;4(1):119. doi: 10.1057/s41599-018-0173-x.
    1. Blanchet K, Lewis JJ, Pozo-Martin F, et al. A mixed methods protocol to evaluate the effect and cost-effectiveness of an integrated electronic diagnosis approach (IeDA) for the management of childhood illnesses at primary health facilities in Burkina Faso. Implement Sci. 2016;11:111. doi: 10.1186/s13012-016-0476-5.
    1. Hussey MA, Hughes JP. Design and analysis of stepped wedge cluster randomized trials. Contemp Clin Trials. 2007;28(2):182–191. doi: 10.1016/j.cct.2006.05.007.
    1. World Health Organisation (WHO). Service Availability and Readiness Assessment (SARA): an annual monitoring system for service delivery - Reference Manual. Health Statistics and Information Systems, WHO: Geneva. 2013. Available from:
    1. Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton (FL): Chapman and Hall; 2009.
    1. Thompson JA, Davey C, Hayes RJ, Hargreaves J, Fielding K. Swpermute: permutation tests for stepped-wedge cluster randomised trials. Stata J. 2019;19(4):803–819. doi: 10.1177/1536867X19893624.
    1. Thompson JA, Davey C, Fielding K, Hargreaves JR, Hayes RJ. Robust analysis of stepped wedge trials using cluster-level summaries within periods. Stat Med. 2018;37(16):2487–2500. doi: 10.1002/sim.7668.
    1. Keitel K, Kagoro F, Samaka J, Masimba J, Said Z, Temba H, Mlaganile T, Sangu W, Rambaud-Althaus C, Gervaix A, Genton B, D’Acremont V. A novel electronic algorithm using host biomarker point-of-care tests for the management of febrile illnesses in Tanzanian children (e-POCT): a randomised, controlled non-inferiority trial. PLoS Med. 2017;14(10):e1002411. doi: 10.1371/journal.pmed.1002411.
    1. Rowe AK, de Savigny D, Lanata CF, Victora CG. How can we achieve and maintain high-quality performance of health workers in low-resource settings? Lancet. 2005;366(9490):1026–1035. doi: 10.1016/S0140-6736(05)67028-6.
    1. Rowe AK, Onikpo F, Lama M, Osterholt DM, Rowe SY, Deming MS. A multifaceted intervention to improve health worker adherence to integrated management of childhood illness guidelines in Benin. Am J Public Health. 2009;99(5):837–846. doi: 10.2105/AJPH.2008.134411.
    1. Magge H, Anatole M, Cyamatare FR, Mezzacappa C, Nkikabahizi F, Niyonzima S, Drobac PC, Ngabo F, Hirschhorn LR. Mentoring and quality improvement strengthen integrated management of childhood illness implementation in rural Rwanda. Arch Dis Child. 2015;100(6):565–570. doi: 10.1136/archdischild-2013-305863.
    1. Lange S, Mwisongo A, Maestad O. Why don’t clinicians adhere more consistently to guidelines for the integrated Management of Childhood Illness (IMCI)? Soc Sci Med. 2014;104:56–63. doi: 10.1016/j.socscimed.2013.12.020.
    1. Leonard K, Masatu MC. Outpatient process quality evaluation and the Hawthorne effect. Soc Sci Med. 2006;63(9):2330–2340. doi: 10.1016/j.socscimed.2006.06.003.
    1. Ministère de la Santé, Direction. Générale de la Santé de la Famille, Direction de la Santé de la Mère et de l’Enfant. Évaluation de la mise en œuvre du plan de couverture PCIME 2005–2010 du Burkina Faso. Ouagadougou; 2013.

Source: PubMed

3
Sottoscrivi