The effects of remote ischaemic preconditioning on coronary artery function in patients with stable coronary artery disease

D Corcoran, R Young, P Cialdella, P McCartney, A Bajrangee, B Hennigan, D Collison, D Carrick, A Shaukat, R Good, S Watkins, M McEntegart, J Watt, P Welsh, N Sattar, A McConnachie, K G Oldroyd, C Berry, D Corcoran, R Young, P Cialdella, P McCartney, A Bajrangee, B Hennigan, D Collison, D Carrick, A Shaukat, R Good, S Watkins, M McEntegart, J Watt, P Welsh, N Sattar, A McConnachie, K G Oldroyd, C Berry

Abstract

Background: Remote ischaemic preconditioning (RIPC) is a cardioprotective intervention invoking intermittent periods of ischaemia in a tissue or organ remote from the heart. The mechanisms of this effect are incompletely understood. We hypothesised that RIPC might enhance coronary vasodilatation by an endothelium-dependent mechanism.

Methods: We performed a prospective, randomised, sham-controlled, blinded clinical trial. Patients with stable coronary artery disease (CAD) undergoing elective invasive management were prospectively enrolled, and randomised to RIPC or sham (1:1) prior to angiography. Endothelial-dependent vasodilator function was assessed in a non-target coronary artery with intracoronary infusion of incremental acetylcholine doses (10-6, 10-5, 10-4mol/l). Venous blood was sampled pre- and post-RIPC or sham, and analysed for circulating markers of endothelial function. Coronary luminal diameter was assessed by quantitative coronary angiography. The primary outcome was the between-group difference in the mean percentage change in coronary luminal diameter following the maximal acetylcholine dose (Clinicaltrials.gov identifier: NCT02666235).

Results: 75 patients were enrolled. Following angiography, 60 patients (mean±SD age 57.5±8.5years; 80% male) were eligible and completed the protocol (n=30 RIPC, n=30 sham). The mean percentage change in coronary luminal diameter was -13.3±22.3% and -2.0±17.2% in the sham and RIPC groups respectively (difference 11.32%, 95%CI: 1.2- 21.4, p=0.032). This remained significant when age and sex were included as covariates (difference 11.01%, 95%CI: 1.01- 21.0, p=0.035). There were no between-group differences in endothelial-independent vasodilation, ECG parameters or circulating markers of endothelial function.

Conclusions: RIPC attenuates the extent of vasoconstriction induced by intracoronary acetylcholine infusion. This endothelium-dependent mechanism may contribute to the cardioprotective effects of RIPC.

Keywords: Cardioprotection; Coronary artery disease; Endothelial function; Myocardial infarction; Remote ischaemic preconditioning.

Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Illustration of the RIC-COR study protocol. RIPC = remote ischaemic preconditioning.
Fig. 2
Fig. 2
CONSORT (Consolidated Standards of Reporting Trials) flow diagram. RIPC = remote ischaemic preconditioning.

References

    1. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136.
    1. Przyklenk K., Bauer B., Ovize M., Kloner R.A., Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–899.
    1. Birnbaum Y., Hale S.L., Kloner R.A. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation. 1997;96(5):1641–1646.
    1. Oxman T., Arad M., Klein R., Avazov N., Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am. J. Phys. 1997;273(4 Pt 2):H1707–12.
    1. Kharbanda R.K., Mortensen U.M., White P.A., Kristiansen S.B., Schmidt M.R., Hoschtitzky J.A. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–2883.
    1. Hausenloy D.J., Barrabes J.A., Botker H.E., Davidson S.M., Di Lisa F., Downey J. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res. Cardiol. 2016;111(6):70.
    1. Hausenloy D.J., Yellon D.M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 2016;13(4):193–209.
    1. Hoole S.P., Heck P.M., Sharples L., Khan S.N., Duehmke R., Densem C.G. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) study: a prospective, randomized control trial. Circulation. 2009;119(6):820–827.
    1. Thielmann M., Kottenberg E., Kleinbongard P., Wendt D., Gedik N., Pasa S. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet. 2013;382(9892):597–604.
    1. Candilio L., Malik A., Ariti C., Barnard M., Di Salvo C., Lawrence D. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart. 2015;101(3):185–192.
    1. Hausenloy D.J., Mwamure P.K., Venugopal V., Harris J., Barnard M., Grundy E. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–579.
    1. D'Ascenzo F., Moretti C., Omede P., Cerrato E., Cavallero E., Er F. Cardiac remote ischaemic preconditioning reduces periprocedural myocardial infarction for patients undergoing percutaneous coronary interventions: a meta-analysis of randomised clinical trials. EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2014;9(12):1463–1471.
    1. Pei H., Wu Y., Wei Y., Yang Y., Teng S., Zhang H. Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials. PLoS One. 2014;9(12)
    1. Sardar P., Chatterjee S., Kundu A., Samady H., Owan T., Giri J. Remote ischemic preconditioning in patients undergoing cardiovascular surgery: evidence from a meta-analysis of randomized controlled trials. Int. J. Cardiol. 2016;221:34–41.
    1. Heusch G., Botker H.E., Przyklenk K., Redington A., Yellon D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 2015;65(2):177–195.
    1. Botker H.E., Kharbanda R., Schmidt M.R., Bottcher M., Kaltoft A.K., Terkelsen C.J. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375(9716):727–734.
    1. Heusch G., Rassaf T. Time to give up on Cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ. Res. 2016;119(5):676–695.
    1. Kleinbongard P., Skyschally A., Heusch G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 2017;469(2):159–181.
    1. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674–699.
    1. Heusch G., Boengler K., Schulz R. Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res. Cardiol. 2010;105(2):151–154.
    1. Jensen R.V., Stottrup N.B., Kristiansen S.B., Botker H.E. Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res. Cardiol. 2012;107(5):285.
    1. Rassaf T., Totzeck M., Hendgen-Cotta U.B., Shiva S., Heusch G., Kelm M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res. 2014;114(10):1601–1610.
    1. Lambert E.A., Thomas C.J., Hemmes R., Eikelis N., Pathak A., Schlaich M.P. Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2016;311(2):H364–70.
    1. Jeanneteau J., Hibert P., Martinez M.C., Tual-Chalot S., Tamareille S., Furber A. Microparticle release in remote ischemic conditioning mechanism. Am. J. Physiol. Heart Circ. Physiol. 2012;303(7):H871–7.
    1. Halcox J.P., Schenke W.H., Zalos G., Mincemoyer R., Prasad A., Waclawiw M.A. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–658.
    1. Schachinger V., Britten M.B., Zeiher A.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–1906.
    1. Suwaidi J.A., Hamasaki S., Higano S.T., Nishimura R.A., Holmes D.R., Jr., Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101(9):948–954.
    1. Jones H., Nyakayiru J., Bailey T.G., Green D.J., Cable N.T., Sprung V.S. Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur. J. Prev. Cardiol. 2015;22(8):1083–1087.
    1. Jones H., Hopkins N., Bailey T.G., Green D.J., Cable N.T., Thijssen D.H. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am. J. Hypertens. 2014;27(7):918–925.
    1. Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2007;27(6):1403–1410.
    1. Lanza G.A., Cesarano M., De Vita A., Villano A., Milo M., Russo G. Effect of remote ischemic preconditioning on coronary procedure-related impairment of vascular dilator function. J. Am. Coll. Cardiol. 2016;68(22):2490–2492.
    1. Abdul-Ghani S., Fleishman A.N., Khaliulin I., Meloni M., Angelini G.D., Suleiman M.S. Remote ischemic preconditioning triggers changes in autonomic nervous system activity: implications for cardioprotection. Phys. Rep. 2017;5(3)
    1. Donato M., Buchholz B., Rodriguez M., Perez V., Inserte J., Garcia-Dorado D. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp. Physiol. 2013;98(2):425–434.
    1. Pickard J.M., Davidson S.M., Hausenloy D.J., Yellon D.M. Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res. Cardiol. 2016;111(4):50.
    1. Diedrich A., Jordan J., Shannon J.R., Robertson D., Biaggioni I. Modulation of QT interval during autonomic nervous system blockade in humans. Circulation. 2002;106(17):2238–2243.
    1. Watt J., Kennedy S., Ahmed N., Hayhurst J., McClure J.D., Berry C. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD. Open Heart. 2016;3(1)
    1. Mohri M., Koyanagi M., Egashira K., Tagawa H., Ichiki T., Shimokawa H. Angina pectoris caused by coronary microvascular spasm. Lancet. 1998;351(9110):1165–1169.
    1. Beltrame J.F., Crea F., Kaski J.C., Ogawa H., Ong P., Sechtem U. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 2017;38(33):2565–2568.
    1. Ong P., Athanasiadis A., Borgulya G., Mahrholdt H., Kaski J.C., Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries) J. Am. Coll. Cardiol. 2012;59(7):655–662.
    1. Ludmer P.L., Selwyn A.P., Shook T.L., Wayne R.R., Mudge G.H., Alexander R.W. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl. J. Med. 1986;315(17):1046–1051.
    1. Shimizu M., Konstantinov I.E., Kharbanda R.K., Cheung M.H., Redington A.N. Effects of intermittent lower limb ischaemia on coronary blood flow and coronary resistance in pigs. Acta Physiol. 2007;190(2):103–109.
    1. Zhou K., Yang B., Zhou X.M., Tan C.M., Zhao Y., Huang C. Effects of remote ischemic preconditioning on the flow pattern of the left anterior descending coronary artery in normal subjects. Int. J. Cardiol. 2007;122(3):250–251.
    1. Hoole S.P., Heck P.M., White P.A., Khan S.N., O'Sullivan M., Clarke S.C. Remote ischemic preconditioning stimulus does not reduce microvascular resistance or improve myocardial blood flow in patients undergoing elective percutaneous coronary intervention. Angiology. 2009;60(4):403–411.
    1. Fearon W.F., Balsam L.B., Farouque H.M., Caffarelli A.D., Robbins R.C., Fitzgerald P.J. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129–3132.
    1. van de Hoef T.P., Nolte F., EchavarrIa-Pinto M., van Lavieren M.A., Damman P., Chamuleau S.A. Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart. 2014;100(12):951–959.
    1. Laude K., Beauchamp P., Thuillez C., Richard V. Endothelial protective effects of preconditioning. Cardiovasc. Res. 2002;55(3):466–473.
    1. Davies W.R., Brown A.J., Watson W., McCormick L.M., West N.E., Dutka D.P. Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ. Cardiovasc. Interv. 2013;6(3):246–251.
    1. Niccoli G., Scalone G., Lerman A., Crea F. Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 2016;37(13):1024–1033.
    1. Hausenloy D.J., Candilio L., Evans R., Ariti C., Jenkins D.P., Kolvekar S. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 2015;373(15):1408–1417.
    1. Meybohm P., Bein B., Brosteanu O., Cremer J., Gruenewald M., Stoppe C. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 2015;373(15):1397–1407.
    1. Heusch G. Critical issues for the translation of cardioprotection. Circ. Res. 2017;120(9):1477–1486.
    1. Thygesen K., Alpert J.S., Jaffe A.S., Simoons M.L., Chaitman B.R., White H.D. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012;60(16):1581–1598.
    1. Kloner R.A., Schwartz Longacre L. State of the science of cardioprotection: challenges and opportunities—proceedings of the 2010 NHLBI workshop on cardioprotection. J. Cardiovasc. Pharmacol. Ther. 2011;16(3–4):223–232.
    1. Zhou C., Liu Y., Yao Y., Zhou S., Fang N., Wang W. Beta-blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J. Cardiothorac. Vasc. Anesth. 2013;27(2):305–311.

Source: PubMed

3
Sottoscrivi