Analysis of Gender Differences in HRV of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Mobile-Health Technology

Lluis Capdevila, Jesús Castro-Marrero, José Alegre, Juan Ramos-Castro, Rosa M Escorihuela, Lluis Capdevila, Jesús Castro-Marrero, José Alegre, Juan Ramos-Castro, Rosa M Escorihuela

Abstract

In a previous study using mobile-health technology (mHealth), we reported a robust association between chronic fatigue symptoms and heart rate variability (HRV) in female patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This study explores HRV analysis as an objective, non-invasive and easy-to-apply marker of ME/CFS using mHealth technology, and evaluates differential gender effects on HRV and ME/CFS core symptoms. In our methodology, participants included 77 ME/CFS patients (32 men and 45 women) and 44 age-matched healthy controls (19 men and 25 women), all self-reporting subjective scores for fatigue, sleep quality, anxiety, and depression, and neurovegetative symptoms of autonomic dysfunction. The inter-beat cardiac intervals are continuously monitored/recorded over three 5-min periods, and HRV is analyzed using a custom-made application (iOS) on a mobile device connected via Bluetooth to a wearable cardiac chest band. Male ME/CFS patients show increased scores compared with control men in all symptoms and scores of fatigue, and autonomic dysfunction, as with women in the first study. No differences in any HRV parameter appear between male ME/CFS patients and controls, in contrast to our findings in women. However, we have found negative correlations of ME/CFS symptomatology with cardiac variability (SDNN, RMSSD, pNN50, LF) in men. We have also found a significant relationship between fatigue symptomatology and HRV parameters in ME/CFS patients, but not in healthy control men. Gender effects appear in HF, LF/HF, and HFnu HRV parameters. A MANOVA analysis shows differential gender effects depending on the experimental condition in autonomic dysfunction symptoms and HF and HFnu HRV parameters. A decreased HRV pattern in ME/CFS women compared to ME/CFS men may reflect a sex-related cardiac autonomic dysfunction in ME/CFS illness that could be used as a predictive marker of disease progression. In conclusion, we show that HRV analysis using mHealth technology is an objective, non-invasive tool that can be useful for clinical prediction of fatigue severity, especially in women with ME/CFS.

Keywords: HRV; ME/CFS; chronic fatigue syndrome; gender differences; heart rate variability; mHealth; myalgic encephalomyelitis.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Screenshots sequence corresponding to the custom-made application (FitLab® App). The first screen (left) shows all the stored recordings in the app pending to be synchronized with the server and the possibility to start a new one (“+” symbol). The next three screens ask for the situation where the recording takes place. The last screen (on the right) shows the instantaneous heart rate (in BPM) and the RR series.
Figure 2
Figure 2
Simple regression analysis between physical fatigue perception (FIS-40) and HRV parameters differentiating ME/CFS patients (n = 32) and Control men (n = 19). Physical FIS-40 score is significantly explained from (A) SDNN (p = 0.005), (B) RMSSD (p = 0.026), (C) LF (p = 0.002), and (D) HF (p = 0.016), for ME/CFS patients (black squares, upper regression lines), but not for those healthy controls (white circles, bottom regression lines).
Figure 3
Figure 3
Comparison of the HRV time-domain indices in the whole sample. Mean ± SEM of (A) mean of RR intervals (meanRR), (B) standard deviation of all RR intervals (SDNN), (C) root mean square of differences of successive RR intervals (RMSSD), and (D) the proportion derived by dividing the number of interval differences of successive RR intervals greater than 50 ms by the total number of RR intervals (pNN50). a,b Mean values with unlike letters were significantly different between groups (two-way ANOVA and Duncan’s post hoc comparison, p < 0.05). W-C: Healthy control women (n = 25); W-F: ME/CFS women (n = 44); M-C: Healthy control men (n = 18); M-F: ME/CFS men (n = 32).
Figure 4
Figure 4
Comparison of the HRV frequency-domain indices in the sample. Mean ± SEM of (A) power of the low frequency band (LF), (B) power of the high frequency band (HF), (C) LF/HF ratio, and (D) normalized HF value (HFnu). a,b Mean values with unlike letters were significantly different between groups (two-way ANOVA and Duncan’s post hoc comparison, p < 0.05). W-C: Healthy control women (n = 25); W-F: ME/CFS women (n = 44); M-C: Healthy control men (n = 18); M-F: ME/CFS men (n = 32).

References

    1. Prins J.B., van der Meer J.W., Bleijenberg G. Chronic Fatigue Syndrome. Lancet. 2006;367:346–355. doi: 10.1016/S0140-6736(06)68073-2.
    1. Castro-Marrero J., Sáez-Francàs N., Santillo D., Alegre J. Treatment and Management of Chronic Fatigue syndrome/myalgic Encephalomyelitis: All Roads Lead to Rome. Br. J. Pharmacol. 2017;174:345–369. doi: 10.1111/bph.13702.
    1. Klimas N.G., Broderick G., Fletcher M.A. Biomarkers for Chronic Fatigue. Brain Behav. Immun. 2012;26:1202–1210. doi: 10.1016/j.bbi.2012.06.006.
    1. Cheema A.K., Sarria L., Bekheit M., Collado F., Almenar-Pérez E., Martín-Martínez E., Alegre J., Castro-Marrero J., Fletcher M.A., Klimas N.G., et al. Unravelling Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Gender-specific Changes in the MicroRNA Expression Profiling in ME/CFS. J. Cell. Mol. Med. 2020;24:5865–5877. doi: 10.1111/jcmm.15260.
    1. Shaffer F., Ginsberg J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258.
    1. Laborde S., Mosley E., Thayer J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017;8:213. doi: 10.3389/fpsyg.2017.00213.
    1. Hildebrandt L.K., McCall C., Engen H.G., Singer T. Cognitive Flexibility, Heart Rate Variability, and Resilience Predict Fine-Grained Regulation of Arousal During Prolonged Threat. Psychophysiology. 2016;53:880–890. doi: 10.1111/psyp.12632.
    1. Mather M., Thayer J.F. How Heart Rate Variability Affects Emotion Regulation Brain Networks. Curr. Opin. Behav. Sci. 2018;19:98–104. doi: 10.1016/j.cobeha.2017.12.017.
    1. Voss A., Schroeder R., Heitmann A., Peters A., Perz S. Short-Term Heart Rate Variability—Influence of Gender and Age in Healthy Subjects. PLoS ONE. 2015;10:e0118308. doi: 10.1371/journal.pone.0118308.
    1. Li K., Rüdiger H., Ziemssen T. Spectral Analysis of Heart Rate Variability: Time Window Matters. Front. Neurol. 2019;10:545. doi: 10.3389/fneur.2019.00545.
    1. Nelson M.J., Bahl J.S., Buckley J.D., Thomson R.L., Davison K. Evidence of altered cardiac autonomic regulation in myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e17600. doi: 10.1097/MD.0000000000017600.
    1. Boissoneault J., Letzen J., Robinson M., Staud R. Cerebral Blood Flow and Heart Rate Variability Predict Fatigue Severity in Patients with Chronic Fatigue Syndrome. Brain Imaging Behav. 2018;13:789–797. doi: 10.1007/s11682-018-9897-x.
    1. Van Cauwenbergh D., Nijs J., Kos D., Van Weijnen L., Struyf F., Meeus M. Malfunctioning of the Autonomic Nervous System in Patients with Chronic Fatigue Syndrome: A Systematic Literature Review. Eur. J. Clin. Investig. 2014;44:516–526. doi: 10.1111/eci.12256.
    1. Escorihuela R.M., Capdevila L., Castro J.R., Zaragozà M.C., Maurel S., Alegre J., Castro-Marrero J. Reduced Heart Rate Variability Predicts Fatigue Severity in Individuals with Chronic Fatigue syndrome/Myalgic Encephalomyelitis. J. Transl. Med. 2020;18:4–12. doi: 10.1186/s12967-019-02184-z.
    1. Fiordelli M., Diviani N., Schulz P.J. Mapping MHealth Research: A Decade of Evolution. J. Med. Internet Res. 2013;15:e95. doi: 10.2196/jmir.2430.
    1. Free C., Phillips G., Felix L., Galli L., Patel V., Edwards P. The Effectiveness of M-Health Technologies for Improving Health and Health Services: A Systematic Review Protocol. BMC Res. Notes. 2010;3:250. doi: 10.1186/1756-0500-3-250.
    1. Schondorf R., Benoit J., Wein T., Phaneuf D. Orthostatic Intolerance in the Chronic Fatigue Syndrome. J. Auton. Nerv. Syst. 1999;75:192–201. doi: 10.1016/S0165-1838(98)00177-5.
    1. Ruiz E., Alegre J., Quintana A.G., Aliste L., Blázquez A., De Sevilla T.F. Síndrome De Fatiga crónica: Estudio De Una Serie Consecutiva De 824 Casos Evaluados En Dos Unidades Especializadas. [Chronic fatigue syndrome: Study of a consecutive series of 824 cases assessed in two specialized units] Rev. Clínica Española. 2011;211:385–390. doi: 10.1016/j.rce.2011.02.013.
    1. Ettinger S.M., Silber D.H., Collins B.G., Gray K.S., Sutliff G., Whisler S.K., McClain J.M., Smith M.B., Yang Q.X., Sinoway L. Influences of Gender on Sympathetic Nerve Responses to Static Exercise. J. Appl. Physiol. 1996;80:245–251. doi: 10.1152/jappl.1996.80.1.245.
    1. Beaston-Wimmer P., Smolen A.J. Gender Differences in Neurotransmitter Expression in the Rat Superior Cervical Ganglion. Dev. Brain Res. 1991;58:123–128. doi: 10.1016/0165-3806(91)90244-D.
    1. Huikuri H.V., Pikkujämsä S.M., Airaksinen K.J., Ikäheimo M.J., Rantala A.O., Kauma H., Lilja M., Kesäniemi Y.A. Sex-Related Differences in Autonomic Modulation of Heart Rate in Middle-Aged Subjects. Circulation. 1996;94:122–125. doi: 10.1161/01.CIR.94.2.122.
    1. Madden K., Savard G.K. Effects of Mental State on Heart Rate and Blood Pressure Variability in Men and Women. Clin. Physiol. 1995;15:557–569. doi: 10.1111/j.1475-097X.1995.tb00544.x.
    1. Ramaekers D., Ector H., Aubert A., Rubens A., Van De Werf F. Heart Rate Variability and Heart Rate in Healthy Volunteers. Is the Female Autonomic Nervous System Cardioprotective? Eur. Heart J. 1998;19:1334–1341. doi: 10.1053/euhj.1998.1084.
    1. Yamasaki Y., Kodama M., Matsuhisa M., Kishimoto M., Ozaki H., Tani A., Ueda N., Ishida Y., Kamada T. Diurnal Heart Rate Variability in Healthy Subjects: Effects of Aging and Sex Difference. Am. J. Physiol. Circ. Physiol. 1996;271:H303–H310. doi: 10.1152/ajpheart.1996.271.1.H303.
    1. Liao D., Barnes R.W., Chambless L.E., Simpson R.J., Sorlie P., Heiss G., The ARIC Investigators Age, Race, and Sex Differences in Autonomic Cardiac Function Measured by Spectral Analysis of Heart Rate variability—The ARIC Study. Am. J. Cardiol. 1995;76:906–912. doi: 10.1016/S0002-9149(99)80260-4.
    1. Kuo T.B.J., Lin T., Yang C.C.H., Li C.-L., Chen C.-F., Chou P. Effect of Aging on Gender Differences in Neural Control of Heart Rate. Am. J. Physiol. Circ. Physiol. 1999;277:H2233–H2239. doi: 10.1152/ajpheart.1999.277.6.H2233.
    1. Gregoire J., Tuck S., Hughson R.L., Yamamoto Y. Heart Rate Variability at Rest and Exercise: Influence of Age, Gender, and Physical Training. Can. J. Appl. Physiol. 1996;21:455–470. doi: 10.1139/h96-040.
    1. Ryan S.M., Goldberger A.L., Pincus S.M., Mietus J., Lipsitz L.A. Gender- and Age-Related Differences in Heart Rate Dynamics: Are Women More Complex Than Men? J. Am. Coll. Cardiol. 1994;24:1700–1707. doi: 10.1016/0735-1097(94)90177-5.
    1. David S.P., Naudet F., Laude J., Radua J., Fusar-Poli P., Chu I., Stefanick M.L., Ioannidis J.P.A. Potential Reporting Bias in Neuroimaging Studies of Sex Differences. Sci. Rep. 2018;8:6082. doi: 10.1038/s41598-018-23976-1.
    1. Maksoud R., Du Preez S., Eaton-Fitch N., Thapaliya K., Barnden L., Cabanas H., Staines D., Marshall-Gradisnik S. A Systematic Review of Neurological Impairments in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome Using Neuroimaging Techniques. PLoS ONE. 2020;15:e0232475. doi: 10.1371/journal.pone.0232475.
    1. Fukuda K., Straus S.E., Hickie I., Sharpe M.C., Dobbins J.G., Komaroff A. The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994;121:953–959. doi: 10.7326/0003-4819-121-12-199412150-00009.
    1. Hoogenhout E.M., Van Der Elst W., De Groot R.H.M., Van Boxtel M.P., Jolles J. The Neurovegetative Complaints Questionnaire in the Maastricht Aging Study: Psychometric Properties and Normative Data. Aging Ment. Health. 2010;14:613–623. doi: 10.1080/13607861003587297.
    1. Fisk J.D., Ritvo P.G., Ross L., Haase D.A., Marrie T.J., Schlech W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994;18:S79–S83. doi: 10.1093/clinids/18.Supplement_1.S79.
    1. Sletten D.M., Suarez G.A., Low P.A., Mandrekar J., Singer W. COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012;87:1196–1201. doi: 10.1016/j.mayocp.2012.10.013.
    1. Buysse D.J., Reynolds C.F., Monk T.H., Berman S.R., Kupfer D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989;28:193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Herrero M.J., Blanch J., Peri J.M., De Pablo J., Pintor L., Bulbena A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen. Hosp. Psychiatry. 2003;25:277–283. doi: 10.1016/S0163-8343(03)00043-4.
    1. Moreno J., Ramos-Castro J., Movellan J., Parrado E., Rodas G., Capdevila L. Facial Video-Based Photoplethysmography to Detect HRV at Rest. Int. J. Sports Med. 2015;36:474–480. doi: 10.1055/s-0034-1398530.
    1. Parrado E., Garcia M.A., Ramos J.L., Cervantes J.C., Rodas G., Capdevila L. Comparison of Omega Wave System and Polar S810i to Detect R-R Intervals at Rest. Int. J. Sports Med. 2010;31:336–341. doi: 10.1055/s-0030-1248319.
    1. Malik M., Bigger J.T., Camm A.J., Kleiger R.E., Malliani A., Moss A.J., Schwartz P.J. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use: Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996;17:354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868.
    1. García-González M.A., Fernández-Chimeno M., Guede-Fernández F., Ferrer-Mileo V., Argelagós-Palau A., Álvarez-Gómez L., Parrado E., Moreno J., Capdevila L., Ramos-Castro J. A Methodology to Quantify the Differences Between Alternative Methods of Heart Rate Variability Measurement. Physiol. Meas. 2015;37:128–144. doi: 10.1088/0967-3334/37/1/128.
    1. Capdevila L., Parrado E., Ramos-Castro J., Zapata-Lamana R., Lalanza J.F. Resonance Frequency Is Not Always Stable over Time and Could Be Related to the Inter-Beat Interval. Sci. Rep. 2021;11:8400. doi: 10.1038/s41598-021-87867-8.
    1. Young H.A., Benton D. Heart-Rate Variability: A Biomarker to Study the Influence of Nutrition on Physiological and Psychological Health? Behav. Pharmacol. 2018;29:140–151. doi: 10.1097/FBP.0000000000000383.
    1. Lehrer P.M. Heart Rate Variability Biofeedback and Other Psychophysiological Procedures as Important Elements in Psychotherapy. Int. J. Psychophysiol. 2018;131:89–95. doi: 10.1016/j.ijpsycho.2017.09.012.
    1. Xhyheri B., Manfrini O., Mazzolini M., Pizzi C., Bugiardini R. Heart Rate Variability Today. Prog. Cardiovasc. Dis. 2012;55:321–331. doi: 10.1016/j.pcad.2012.09.001.
    1. Walker F.R., Pfingst K., Carnevali L., Sgoifo A., Nalivaiko E. In the Search for Integrative Biomarker of Resilience to Psychological Stress. Neurosci. Biobehav. Rev. 2017;74:310–320. doi: 10.1016/j.neubiorev.2016.05.003.
    1. Lehrer P.M., Gevirtz R. Heart Rate Variability Biofeedback: How and Why Does It Work? Front. Psychol. 2014;5:756. doi: 10.3389/fpsyg.2014.00756.
    1. Vaschillo E.G., Vaschillo B., Lehrer P.M. Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback. Appl. Psychophysiol. Biofeedback. 2006;31:129–142. doi: 10.1007/s10484-006-9009-3.
    1. Mccraty R., Shaffer F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Glob. Adv. Health Med. 2015;4:46–61. doi: 10.7453/gahmj.2014.073.
    1. Ebuchheit M. Monitoring Training Status with HR Measures: Do All Roads Lead to Rome? Front. Physiol. 2014;5:73. doi: 10.3389/fphys.2014.00073.
    1. Holzman J.B., Bridgett D.J. Heart Rate Variability Indices as Bio-Markers of Top-down Self-Regulatory Mechanisms: A Meta-Analytic Review. Neurosci. Biobehav. Rev. 2017;74:233–255. doi: 10.1016/j.neubiorev.2016.12.032.
    1. Oliveira R.S., Barker A.R., Wilkinson K.M., Abbott R.A., Williams C.A. Is Cardiac Autonomic Function Associated with Cardiorespiratory Fitness and Physical Activity in Children and Adolescents? A Systematic Review of Cross-Sectional Studies. Int. J. Cardiol. 2017;236:113–122. doi: 10.1016/j.ijcard.2017.02.022.
    1. Williams S., Booton T., Watson M., Rowland D., Altini M. Heart Rate Variability Is a Moderating Factor in the Work-Load-Injury Relationship of Competitive CrossFitTM Athletes. J. Sports Sci. Med. 2017;16:443–449.
    1. Papaioannou V.E., Pneumatikos I., Maglaveras N. Association of Heart Rate Variability and Inflammatory Response in Patients with Cardiovascular Diseases: Current Strengths and Limitations. Front. Physiol. 2013;4:174. doi: 10.3389/fphys.2013.00174.
    1. Benichou T., Pereira B., Mermillod M., Tauveron I., Pfabigan D., Maqdasy S., Dutheil F. Heart Rate Variability in Type 2 Diabetes Mellitus: A Systematic Review and meta–analysis. PLoS ONE. 2018;13:e0195166. doi: 10.1371/journal.pone.0195166.
    1. Elias M.F., Torres R.V. The Renaissance of Heart Rate Variability as a Predictor of Cognitive Functioning. Am. J. Hypertens. 2017;31:21–23. doi: 10.1093/ajh/hpx150.
    1. Alvares G.A., Quintana D.S., Hickie I.B., Guastella A.J. Autonomic Nervous System Dysfunction in Psychiatric Disorders and the Impact of Psychotropic Medications: A Systematic Review and Meta-Analysis. J. Psychiatry Neurosci. 2016;41:89–104. doi: 10.1503/jpn.140217.
    1. Faurholt-Jepsen M., Kessing L.V., Munkholm K. Heart Rate Variability in Bipolar Disorder: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2017;73:68–80. doi: 10.1016/j.neubiorev.2016.12.007.
    1. Kidwell M., Ellenbroek B.A. Heart and Soul: Heart Rate Variability and Major Depression. Behav. Pharmacol. 2018;29:152–164. doi: 10.1097/FBP.0000000000000387.
    1. Kim H.-G., Cheon E.-J., Bai D.-S., Lee Y.H., Koo B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018;15:235–245. doi: 10.30773/pi.2017.08.17.
    1. Owens A.P. The Role of Heart Rate Variability in the Future of Remote Digital Biomarkers. Front. Neurosci. 2020;14 doi: 10.3389/fnins.2020.582145.
    1. Natarajan A., Pantelopoulos A., Emir-Farinas H., Natarajan P. Heart Rate Variability with Photoplethysmography in 8 Million Individuals: A Cross-Sectional Study. Lancet Digit. Health. 2020;2:e650–e657. doi: 10.1016/S2589-7500(20)30246-6.
    1. Economides M., Lehrer P., Ranta K., Nazander A., Hilgert O., Raevuori A., Gevirtz R., Khazan I., Forman-Hoffman V.L. Feasibility and Efficacy of the Addition of Heart Rate Variability Biofeedback to a Remote Digital Health Intervention for Depression. Appl. Psychophysiol. Biofeedback. 2020;45:75–86. doi: 10.1007/s10484-020-09458-z.
    1. Fuller D., Colwell E., Low J., Orychock K., Tobin M.A., Simango B., Buote R., Van Heerden D., Luan H., Cullen K., et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth uHealth. 2020;8:e18694. doi: 10.2196/18694.
    1. Singh N., Moneghetti K.J., Christle J.W., Hadley D., Plews D., Froelicher V., Inc S.C.I. Heart Rate Variability: An Old Metric with New Meaning in the Era of Using MHealth Technologies for Health and Exercise Training Guidance. Part One: Physiology and Methods. Arrhythmia Electrophysiol. Rev. 2018;7:193–198. doi: 10.15420/aer.2018.27.2.
    1. Singh N., Moneghetti K.J., Christle J.W., Hadley D., Froelicher V., Plews D., Inc S.C.I. Heart Rate Variability: An Old Metric with New Meaning in the Era of Using MHealth Technologies for Health and Exercise Training Guidance. Part Two: Prognosis and Training. Arrhythmia Electrophysiol. Rev. 2018;7 doi: 10.15420/aer.2018.30.2.
    1. Li K.H.C., White F.A., Tipoe T., Liu T., Wong K.C., Jesuthasan A., Baranchuk A., Tse G., Yan B.P. The Current State of Mobile Phone Apps for Monitoring Heart Rate, Heart Rate Variability, and Atrial Fibrillation: Narrative Review. JMIR mHealth uHealth. 2019;7:e11606. doi: 10.2196/11606.
    1. Moraes J.L., Rocha M.X., Vasconcelos G.G., Filho J.E.V., De Albuquerque V.H.C., Alexandria A.R. Advances in Photopletysmography Signal Analysis for Biomedical Applications. Sensors. 2018;18:1894. doi: 10.3390/s18061894.
    1. Hernández-Vicente A., Hernando D., Marín-Puyalto J., Vicente-Rodríguez G., Garatachea N., Pueyo E., Bailón R. Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis During Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors. 2021;21:902. doi: 10.3390/s21030902.
    1. Dobbs W.C., Fedewa M.V., Macdonald H.V., Holmes C.J., Cicone Z.S., Plews D.J., Esco M.R. The Accuracy of Acquiring Heart Rate Variability from Portable Devices: A Systematic Review and Meta-Analysis. Sports Med. 2019;49:417–435. doi: 10.1007/s40279-019-01061-5.

Source: PubMed

3
Sottoscrivi