Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Trinitat Cambras, Jesús Castro-Marrero, Maria Cleofé Zaragoza, Antoni Díez-Noguera, José Alegre, Trinitat Cambras, Jesús Castro-Marrero, Maria Cleofé Zaragoza, Antoni Díez-Noguera, José Alegre

Abstract

Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year. Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer. Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin vasodilator responses may play a role in CFS/ME.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Mean ± SEM band of…
Fig 1. Mean ± SEM band of the environmental temperature and light intensity to which the subjects were exposed to in winter and summer.
Black bands indicate the values registered for CFS/ME patients and grey bands the values for HCs.
Fig 2. Mean values (± SEM) of…
Fig 2. Mean values (± SEM) of self-reported tendency to sleep (A and B) and mood (C and D) for each group in winter and summer.
Overall analysis indicated that sleepiness was higher in CFS/ME patients than in HCs (p = 0.001), while mood is lower in CFS/ME than in HCs (p = 0.009). HCs presented better mood in summer than in winter (p = 0.043). No overall effects of season or time of day were detected.
Fig 3. 24-hour profiles (mean for each…
Fig 3. 24-hour profiles (mean for each group) of activity and temperature for HC and CFS/ME subjects in winter and summer.
A. Mean daily profiles of activity and skin temperature. Dark lines correspond to CFS/ME patients and grey lines to HCs (to aid visualization, SEM is not shown). Asterisks indicate differences between groups at p<0.05 (see text, segments analysis). B. Synthesis of the mean waveform for activity and skin temperature, according to the first two harmonics of the spectrum (see text, spectral analysis subsection).

References

    1. Castro-Marrero J, Sáez-Francàs N, Santillo D, Alegre J. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: all roads lead to Rome. British Journal of Pharmacology. 2017; 174:345–369. doi:
    1. Thorpe T, McManimen S, Gleason K, Stoothoff J, Newton JL, Strand EB, et al. Assessing current functioning as a measure of significant reduction in activity level. Fatigue Biomed Heal Behav. 2016; 4:175–188. doi:
    1. Reynolds KJ, Vernon SD, Bouchery E, Reeves WC. The economic impact of chronic fatigue syndrome. Cost Eff Resour Alloc. 2004; 2:1–9.
    1. Jammes Y, Steinberg J, Mambrini O, Bregeon F, Delliaux S. Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in responce to incremental exercise. J Intern Med. 2005; 257: 299–310. doi:
    1. Jones DEJ, Hollingsworth KG, Taylor R, Blamire AM, Newton JL. Abnormalities in pH handling by peripheral muscle and potential regulation by the autonomic nervous system in chronic fatigue syndrome. J Intern Med. 2010; 267: 394–401. doi:
    1. Rutherford G, Manning P, Newton JL. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J Aging Res. 2016; 2016:2497448 doi:
    1. Jones DEJ, Gray J, Frith J, Newton JL. Fatigue severity remains stable over time and independently associated with orthostatic symptoms in chronic fatigue syndrome: A longitudinal study. J Intern Med. 2011; 269: 182–188. doi:
    1. Newton JL, Okonkwo O, Sutcliffe K, Seth A, Shin J, Jones DEJ. Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM. 2007;100: 519–26. doi:
    1. Racciatti D, Guagnano MT, Vecchiet J, De Remigis PL, Pizzigallo E, Della Vecchia R, et al. Chronic fatigue syndrome: Circadian rhythm and hypothalamic-pituitary-adrenal (HPA) axis impairment. Int J Immunopathol Pharmacol. 2001; 14:11–15. doi:
    1. Morriss RK, Wearden AJ, Battersby L. The relation of sleep difficulties to fatigue, mood and disability in chronic fatigue syndrome. J Psychosom Res. 1997; 42:597–605. doi:
    1. Pedersen M, Ekstedt M, Småstuen MC, Wyller VB, Sulheim D, Fagermoen E, et al. Sleep–wake rhythm disturbances and perceived sleep in adolescent chronic fatigue syndrome. J Sleep Res. 2017; 26: 595–601. doi:
    1. Theadom A, Cropley M, Kantermann T. Daytime napping associated with increased symptom severity in fibromyalgia syndrome. BMC Musculoskelet Disord. 2015; 16:13–22. doi:
    1. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. Elsevier Inc.; 2012; 74:246–60. doi:
    1. Buijs FN, León-mercado L, Guzmán-ruiz M, Guerrero-vargas NN, Romo-nava F, Buijs RM. The Circadian System: A Regulatory Feedback Network of Periphery and. 2016; 170–181.
    1. Tomoda Akemi, Jhodoi Takako, Miike T. Chronic Fatigue Syndrome and abnormal biological rhythms in school children. J Chronic Fatigue Syndr. 2001; 8:29–37.
    1. Hamilos DL, Nutter D, Gershtenson J, Redmond DP, Clementi JD, Schmaling KB, et al. Core body temperature is normal in chronic fatigue syndrome. Biol Psychiatry. 1998; 43:293–302.
    1. Hamilos DL, Nutter D, Gershtenson J, Ikle D, Hamilos SS, Redmond DP, et al. Circadian rhythm of core body temperature in subjects with chronic fatigue syndrome. Clin Physiol. 2001; 21:184–195. doi:
    1. Rahman K, Burton A, Galbraith S, Lloyd A, Vollmer-Conna U. Sleep-wake behavior in chronic fatigue syndrome. Sleep. 2011; 34:671–8.
    1. Williams G, Pirmohamed J, Minors D, Waterhouse J, Buchan I, Arendt J, et al. Dissociation of body-temperature and melatonin secretion circadian rhythms in patients with chronic fatigue syndrome. 1996; 16:327–337.
    1. Buijs RM, La Fleur SE, Wortel J, Van Heyningen C, Zuiddam L, Mettenleiter TC, et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol. 2003; 464: 36–48.
    1. Kalsbeek A, Yi C, Cailotto C, La Fleur SE, Fliers E, Buijs RM. Mammalian clock output mechanisms. Essays Biochem. 2011; 49:137–151. doi:
    1. Blackwell T, Redline S, Ancoli-Israel S, Schneider JL, Surovec S, Johnson NL, et al. Comparison of sleep parameters from actigraphy and polysomnography in older women: the SOF study. Sleep. 2008; 31:283–291. doi:
    1. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, et al. Measuring Sleep: Accuracy, Sensitivity, and Specificity of Wrist Actigraphy Compared to Polysomnography. Sleep. 2013; 36:1747–1755. doi:
    1. Tryon WW, Jason L, Frankenberry E, Torres-harding S. Chronic fatigue syndrome impairs circadian rhythm of activity level. 2004; 82:849–853. doi:
    1. Sarabia JA, Rol MA, Mendiola P, Madrid JA. Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system. Physiol Behav. 2008; 95:570–80. doi:
    1. Hasselberg MJ, Mcmahon J, Parker K. The validity, reliability and utility of the iButton for measurement of body temperature circadian rhythms in sleep / wake research. Sleep Med. 2013; 14:5–11. doi:
    1. Lack LC, Gradisar M, Van Someren EJW, Wright HR, Lushington K. The relationship between insomnia and body temperatures. Sleep Med Rev. 2008; 12:307–17. doi:
    1. Naschitz JE, Yeshurun D, Rosner I. Dysautonomia in chronic fatigue syndrome: Facts, hypotheses, implications. Medical Hypotheses. 2004. 62:203–206. doi:
    1. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. [Internet]. Annals of internal medicine. 1994; 15:953–959. doi:
    1. Carruthers B, Jain A, De Meirleir K, Peterson D, Klimas N, Lemer A, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols (Canadian case definition). J Chronic Fatigue Syndr. 2003; 11:7–115.
    1. Åkerstedt T, Anund A, Axelsson J, Kecklund G. Subjective sleepiness is a sensitive indicator of insufficient sleep and impaired waking function. J Sleep Res. 2014; 23: 240–252. doi:
    1. Fisk JD, Ritvo PG, Ross L, Haase D a, Marrie TJ, Schlech WF. Measuring the functional impact of fatigue: initial validation of the fatigue impact scale. Clin Infect Dis. 1994; 18:S79–S83. doi:
    1. Buysse DJ, Reynolds CF, Monk TH, Berman SR K D. Pittsburgh Sleep Quality Index (PSQI). Psychiatry Res. 1989; 28:193–213.
    1. Herrero MJ, Blanch J, Peri JM, De Pablo J, Pintor L, Bulbena A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen Hosp Psychiatry. 2003; 25:277–283. doi:
    1. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: A refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012; 87:1196–1201. doi:
    1. Alonso J, Prieto L, Antó JM. [The Spanish version of the SF-36 Health Survey (the SF-36 health questionnaire): an instrument for measuring clinical results]. Med Clin (Barc). 1995; 104:771–6.
    1. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep wake identification from wrist activity. Sleep. 1992; 15:461–469.
    1. Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 1990; 27:563–572. doi:
    1. Van Someren EJW, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright Light Therapy: Improved Sensitivity to Its Effects on Rest-Activity Rhythms in Alzheimer Patients by Application of Nonparametric Methods. Chronobiol Int. 1999;16: 505–518. doi:
    1. Scheirer CJ, Ray WS, Hare N. The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs. Biometrics. 1976; 32:429–434. doi:
    1. Powell P, Bentall RP, Nye FJ, Edwards RHT. Patient education to encourage graded exercise in chronic fatigue syndrome: 2-Year follow-up of randomised controlled trial. Br J Psychiatry. 2004; 184:142–146.
    1. Ortiz-Tudela E, Martinez-Nicolas A, Campos M, Rol MÁ, Madrid JA. A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput Biol. 2010;6: e1000996 doi:
    1. Duffy JF, Zitting KM, Chinoy ED. Aging and circadian rhythms. Sleep Med Clin. 2015; 10:423–434. doi:
    1. Wyller VB, Godang K, Mørkrid L, Saul JP, Thaulow E. Abnormal Thermoregulatory Responses in Adolescents With Chronic Fatigue Syndrome: Relation to clinical symptoms. Pediatrics. 2007; 120:e129–e137. doi:
    1. Monk TH, Buysse DJ, Reynolds CF, Kupfer DJ. Circadian determinants of the postlunch dip in performance. Chronobiol Int. 1996; 13:123–133. doi:
    1. Kräuchi K, Gompper B, Hauenstein D, Flammer J, Studerus E, Schötzau A, et al. Diurnal Blood Pressure Variations Are Associated with Changes in Distal—Proximal Skin Temperature Gradient Diurnal Blood Pressure Variations Are Associated with Changes in Distal—Proximal Skin Temperature Gradient. 2012; 29:1273–1283. doi:
    1. Martinez-Nicolas A, Guaita M, Santamaría J, Rol MA. Circadian Impairment of Distal Skin Temperature Rhythm in Patients With Sleep-Disordered Breathing: The Effect of CPAP. Sleep. 2017; 40:1–11. doi:
    1. Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: Insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007; 36:595–614. doi:
    1. Hutchinson C V, Maltby J, Badham SP, Jason LA. Vision-related symptoms as a clinical feature of chronic fatigue syndrome/myalgic encephalomyelitis? Evidence from the DePaul Symptom Questionnaire. Br J Ophthalmol. 2014; 98:144–145. doi:
    1. Gaggioni G, Maquet P, Schmidt C, Dijk D, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. 2014; 8:1–12. doi:
    1. Wright KP, McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. Curr Biol. 2013; 23:1554–1558. doi:
    1. Williams G, Waterhouse J, Mugarza J, Minors D, Hayden K. Therapy of circadian rhythm disorders in chronic fatigue syndrome: No symptomatic improvement with melatonin or phototherapy. Eur J Clin Invest. 2002; 32: 831–837. doi:
    1. Burgess HJ, Park M, Ong JC, Shakoor N, Williams DA, Burns J. Morning Versus Evening Bright Light Treatment at Home to Improve Function and Pain Sensitivity for Women with Fibromyalgia: A Pilot Study. Pain Med. 2017; 18:116–123. doi:
    1. American Academy of Sleep Medicine. International Classification of Sleep Disorders: Diagnostic and Coding Manual. 3nd edition [Internet]. Diagnostic Coding Manual. 2014.
    1. Foster RG, Peirson SN, Wulff K, Winnebeck E, Vetter C, Roenneberg T. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci. 2013. 119:325–346. doi:
    1. Reid KJ, McGee-Koch LL, Zee PC. Cognition in circadian rhythm sleep disorders. Progress in Brain Research. 2011; 190:3–20. doi:
    1. Smith AK, Fang H, Whistler T, Unger ER, Rajeevan MS. Convergent genomic studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome. Neuropsychobiology. 2011; 64:183–194. doi:

Source: PubMed

3
Sottoscrivi