Global spread of Carbapenemase-producing Enterobacteriaceae

Patrice Nordmann, Thierry Naas, Laurent Poirel, Patrice Nordmann, Thierry Naas, Laurent Poirel

Abstract

Carbapenemases increasingly have been reported in Enterobacteriaceae in the past 10 years. Klebsiella pneumoniae carbapenemases have been reported in the United States and then worldwide, with a marked endemicity at least in the United States and Greece. Metallo-enzymes (Verona integron-encoded metallo-β-lactamase, IMP) also have been reported worldwide, with a higher prevalence in southern Europe and Asia. Carbapenemases of the oxacillinase-48 type have been identified mostly in Mediterranean and European countries and in India. Recent identification of New Delhi metallo-β-lactamase-1 producers, originally in the United Kingdom, India, and Pakistan and now worldwide, is worrisome. Detection of infected patients and carriers with carbapenemase producers is necessary for prevention of their spread. Identification of the carbapenemase genes relies mostly on molecular techniques, whereas detection of carriers is possible by using screening culture media. This strategy may help prevent development of nosocomial outbreaks caused by carbapenemase producers, particularly K. pneumoniae.

Figures

Figure 1
Figure 1
A) Worldwide geographic distribution of Klebsiella pneumoniae carbapenemase (KPC) producers. Gray shading indicates regions shown separately: B) distribution in the United States; C) distribution in Europe; D) distribution in China.
Figure 2
Figure 2
Disk diffusion antibacterial drug susceptibility testing of A) Klebsiella pneumoniae carbapenemase-2 (KPC-2)–, B) New Delhi metallo-β-lactamase-1 (NDM-1)–, and C) oxacillinase-48 (OXA-48)–producing K. pneumoniae clinical isolates. Clinical isolates producing KPC-2 and OXA-48 do not co-produce other extended-spectrum β-lactamase, but the isolate producing NDM-1 co-produces the extended-spectrum β-lactamase CTX-M-15. Wild-type susceptibility to β-lactams of K. pneumoniae includes resistance to amoxicillin, ticarcillin, and reduced susceptibility to piperacillin and cefalotin (data not shown).TZP, piperacillin/tazobactam; PIP, piperacillin; TIC, ticarcillin; AMX, amoxicillin; ETP, ertapenem; TCC, ticarcillin/clavulanic acid; CAZ, ceftazidime; CF, cefalotin; FOX, cefoxitin; IMP, imipenem; AMC, amoxicillin/clavulanic acid; CTX, cefotaxime; CXM, cefuroxime; MEM, meropenem; ATM, aztreonam; FEP, cefepime; CIP, ciprofloxacin; CS, colistin; NET, netilmicin; RA, rifampin; OFX, ofloxacin; TE, tetracycline; C, chloramphenicol; TM, tobramycin; NOR, norfloxacin; TGC, tigecycline; SXT, sulfamethoxazole/trimethoprim; AN, amikacin; FT, nitrofurantoin; FOS, fosfomycin; SSS, sulfamethoxazole; GM gentamicin.
Figure 3
Figure 3
Worldwide (A) and European (B) geographic distribution of Verona integron–encoded metallo-β-lactamase (VIM) and IMP enterobacterial producers.
Figure 4
Figure 4
Geographic distribution of New Delhi metallo-β-lactamase-1 producers, July 15, 2011. Star size indicates number of cases reported. Red stars indicate infections traced back to India, Pakistan, or Bangladesh, green stars indicate infections traced back to the Balkan states or the Middle East, and black stars indicate contaminations of unknown origin. (Most of the information corresponds to published data; other data are from P. Nordmann.)
Figure 5
Figure 5
Geographic distribution of oxacillinase-48 (OXA-48) type producers.

References

    1. Pitout JD, Laupland KB. Extended-spectrum β-lactamase–producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–66. 10.1016/S1473-3099(08)70041-0
    1. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20:440–58. 10.1128/CMR.00001-07
    1. Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A. 1994;91:7693–7. 10.1073/pnas.91.16.7693
    1. Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL, et al. Redefining extended-spectrum β-lactamase: balancing science and clinical need. J Antimicrob Chemother. 2009;63:1–4. 10.1093/jac/dkn444
    1. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase KPC-1 from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151–61. 10.1128/AAC.45.4.1151-1161.2001
    1. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36. 10.1016/S1473-3099(09)70054-4
    1. Navon-Venezia S, Leavitt A, Schwaber MJ, Rasheed JK, Srinivasan A, Patel JB, et al. First report on a hyperepidemic clone of KPC-3–producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother. 2009;53:818–20. 10.1128/AAC.00987-08
    1. Cuzon G, Naas T, Truong H, Villegas MV, Wisell KT, Carmeli Y, et al. Worldwide diversity of Klebsiella pneumoniae that produce β-lactamase blaKPC-2 gene. Emerg Infect Dis. 2010;16:1349–56. 10.3201/eid1609.091389
    1. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30:972–6. 10.1086/605922
    1. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099–106. 10.1086/592412
    1. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother. 2008;52:1028–33. 10.1128/AAC.01020-07
    1. Walsh TR, Toleman MA, Poirel L, Nordmannn P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306–25. 10.1128/CMR.18.2.306-325.2005
    1. Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M. Plasmid-mediated dissemination of the metallo-β-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother. 1995;39:824–9.
    1. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009;53:1868–73. 10.1128/AAC.00782-08
    1. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54. 10.1128/AAC.00774-09
    1. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597–602. 10.1016/S1473-3099(10)70143-2
    1. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrob Chemother. 2011;66:689–92. 10.1093/jac/dkq520
    1. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11:355–62. 10.1016/S1473-3099(11)70059-7
    1. Poirel L, Hombrouk-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect Dis. 2010;10:832. 10.1016/S1473-3099(10)70279-6
    1. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis. 2008;14:195–200. 10.3201/eid1402.070350
    1. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:15–22. 10.1128/AAC.48.1.15-22.2004
    1. Carrër A, Poirel L, Yilmaz M, Akan OA, Feriha C, Cuzon G, et al. Spread of OXA-48–encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother. 2010;54:1369–73. 10.1128/AAC.01312-09
    1. Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. Outbreak of OXA-48–positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother. 2011;55:2420–3. 10.1128/AAC.01452-10
    1. Moquet O, Bouchiat C, Kinana A, Seck A, Arouna O, Bercion R, et al. Class D OXA-48 carbapenemase in multidrug-resistant enterobacteria, Senegal. Emerg Infect Dis. 2011;17:143–4. 10.3201/eid1701.100224
    1. Benouda A, Touzani O, Khairallah MT, Araj GF, Matar GM. First detection of oxacillinase-mediated resistance to carbapenems in Klebsiella pneumoniae from Morocco. Ann Trop Med Parasitol. 2010;104:327–30. 10.1179/136485910X12743554760108
    1. Poirel L, Ros A, Carrër A, Fortineau N, Carricajo A, Berthelot P, et al. Cross-border transmission of OXA-48–producing Enterobacter cloacae from Morocco to France. J Antimicrob Chemother. 2011;66:1181–2. 10.1093/jac/dkr023
    1. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1– and OXA-181–producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob Agents Chemother. 2011;55:1274–8. 10.1128/AAC.01497-10
    1. Kalpoe JS, Al Naiemi N, Poirel L, Nordmann P. Detection of an Ambler class D OXA-48–type β-lactamase in a Klebsiella pneumoniae strain in The Netherlands. J Med Microbiol. 2011;60:677–8. 10.1099/jmm.0.028308-0
    1. Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M, et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010;16:112–22. 10.1111/j.1469-0691.2009.03116.x
    1. Thomson KS. Extended-spectrum β-lactamase, AmpC and carbapenemase issues. J Clin Microbiol. 2010;48:1019–25. 10.1128/JCM.00219-10
    1. Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep. 2009;58:256–60.
    1. Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother. 2008;61:548–53. 10.1093/jac/dkm535
    1. Nordmann P, Poirel L, Carrër A, Toleman MA, Walsh TR. How to detect NDM-1 producers. J Clin Microbiol. 2011;49:718–21. 10.1128/JCM.01773-10
    1. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23. 10.1016/j.diagmicrobio.2010.12.002
    1. Naas T, Cuzon G, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol. 2011;49:1608–13. 10.1128/JCM.02607-10
    1. Adler A, Navon-Venezia S, Moran-Gilad J, Marcos E, Schwartz D, Carmeli Y. Laboratory and clinical evaluation of screening agar plates for the detection of carbapenem-resistant enterobacteriaceae from surveillance rectal swabs. J Clin Microbiol. 2011;49:2239–42. 10.1128/JCM.02566-10
    1. Carrër A, Fortineau N, Nordmann P. Use of ChromID ESBL medium for detecting carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2010;48:1913–4. 10.1128/JCM.02277-09
    1. Jean SS, Hsueh PR. High burden of antibimicrobial resistance in Asia. Int J Antimicrob Agents. 2011;37:291–5. 10.1016/j.ijantimicag.2011.01.009
    1. Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 2011;6:653–6. 10.2217/fmb.11.49

Source: PubMed

3
Sottoscrivi