Limited HIV-1 Subtype C nef 3'PPT Variation in Combination Antiretroviral Therapy Naïve and Experienced People Living with HIV in Botswana

Kaelo K Seatla, Dorcas Maruapula, Wonderful T Choga, Olorato Morerinyane, Shahin Lockman, Vladimir Novitsky, Ishmael Kasvosve, Sikhulile Moyo, Simani Gaseitsiwe, Kaelo K Seatla, Dorcas Maruapula, Wonderful T Choga, Olorato Morerinyane, Shahin Lockman, Vladimir Novitsky, Ishmael Kasvosve, Sikhulile Moyo, Simani Gaseitsiwe

Abstract

Dolutegravir (DTG) is a potent anti-HIV drug that is used to treat HIV globally. There have been reports of mutations in the HIV-1 3'-polypurine tract (3'PPT) of the nef gene, contributing to DTG failure; however, there are limited 'real-world' data on this. In addition, there is a knowledge gap on the variability of 3'PPT residues in patients receiving combination antiretroviral therapy (cART) with and without viral load (VL) suppression. HIV-1 subtype C (HIV-1C) whole-genome sequences from cART naïve and experienced individuals were generated using next-generation sequencing. The nef gene sequences were trimmed from the generated whole-genome sequences using standard bioinformatics tools. In addition, we generated separate integrase and nef gene sequences by Sanger sequencing of plasma samples from individuals with virologic failure (VF) while on a DTG/raltegravir (RAL)-based cART. Analysis of 3'PPT residues was performed, and comparison of proportions computed using Pearson's chi-square test with p-values < 0.05 was considered statistically significant. A total of 6009 HIV-1C full genome sequences were generated and had a median log10 HIV-1 VL (Q1, Q3) copies/mL of 1.60 (1.60, 2.60). A total of 12 matching integrase and nef gene sequences from therapy-experienced participants failing DTG/ RAL-based cART were generated. HIV-1C 3'PPT nef gene sequences from therapy-experienced patients failing DTG cART (n = 12), cART naïve individuals (n = 1263), and individuals on cART with and without virological suppression (n = 4696) all had a highly conserved 3'PPT motif with no statistically significant differences identified. Our study confirms the high conservation of the HIV-1 nef gene 3'PPT motif in 'real-world' patients and showed no differences in the motif according to VL suppression or INSTI-based cART failure. Future studies should explore other HIV-1 regions outside of the pol gene for associations with DTG failure.

Keywords: 3′-polypurine tract; Botswana; HIV-1; dolutegravir; drug resistance mutations; nef.

Conflict of interest statement

All authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Study schema depicting the selection of study sequences. (A), selection and analysis of 3′PPT nef gene sequences according to participant cART status and HIV-1 RNA levels; (B), selection and analysis of 3′PPT of nef gene amongst individuals with VF while on DTG/RAL-based cART. Seqs, sequences; PID, participant identification number; VL, viral load; VF, virologic failure; RAL, raltegravir; DTG, dolutegravir; cART, combination antiretroviral therapy; 3′PPT, 3′-polypurine tract; RT, reverse transcriptase HIV-1 gene; PR, protease HIV-1 gene; DRMs, drug resistance mutations; HIV-1C, HIV-1 subtype C.
Figure 2
Figure 2
HIV-1C nef gene 3′PPT variability amongst 6009 sequences from individuals on cART and not on cART. 3′PPT, 3′polypurine tract; cART, combination antiretroviral therapy; HIV-1C, HIV-1 subtype C.

References

    1. Anstett K., Brenner B., Mesplede T., Wainberg M.A. HIV drug resistance against strand transfer integrase inhibitors. Retrovirology. 2017;14:36. doi: 10.1186/s12977-017-0360-7.
    1. DHHS. Panel on Antiretroviral Guidelines for Adults and Adolescents Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV; Department of Health and Human Services. [(accessed on 13 August 2021)];2021 Available online: .
    1. MoHW Handbook of the Botswana 2016 Integrated HIV Clinical Care Guidelines. [(accessed on 15 April 2020)]; Available online: .
    1. Raffi F., Rachlis A., Stellbrink H.J., Hardy W.D., Torti C., Orkin C., Bloch M., Podzamczer D., Pokrovsky V., Pulido F., et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet. 2013;381:735–743. doi: 10.1016/S0140-6736(12)61853-4.
    1. WHO . Update of Recommendations on First- and Second-Line Antiretroviral Regimens. World Health Organization; Geneva, Switzerland: 2019. (WHO/CDS/HIV/19.15); Licence: CC BY-NC-SA 3.0 IGO.
    1. Oliveira M., Ibanescu R.I., Anstett K., Mesplede T., Routy J.P., Robbins M.A., Brenner B.G., The Montreal Primary HIV (PHI) Cohort Study Group Selective resistance profiles emerging in patient-derived clinical isolates with cabotegravir, bictegravir, dolutegravir, and elvitegravir. Retrovirology. 2018;15:56. doi: 10.1186/s12977-018-0440-3.
    1. Seatla K.K., Maruapula D., Choga W.T., Ntsipe T., Mathiba N., Mogwele M., Kapanda M., Nkomo B., Ramaabya D., Makhema J., et al. HIV-1 Subtype C Drug Resistance Mutations in Heavily Treated Patients Failing Integrase Strand Transfer Inhibitor-Based Regimens in Botswana. Viruses. 2021;13:594. doi: 10.3390/v13040594.
    1. Malet I., Subra F., Charpentier C., Collin G., Descamps D., Calvez V., Marcelin A.G., Delelis O. Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors. mBio. 2017;8:e00922-17. doi: 10.1128/mBio.00922-17.
    1. Wijting I.E.A., Lungu C., Rijnders B.J.A., van der Ende M.E., Pham H.T., Mesplede T., Pas S.D., Voermans J.J.C., Schuurman R., van de Vijver D., et al. HIV-1 Resistance Dynamics in Patients With Virologic Failure to Dolutegravir Maintenance Monotherapy. J. Infect. Dis. 2018;218:688–697. doi: 10.1093/infdis/jiy176.
    1. Anderson S.J., Lenburg M., Landau N.R., Garcia J.V. The cytoplasmic domain of CD4 is sufficient for its down-regulation from the cell surface by human immunodeficiency virus type 1 Nef. J. Virol. 1994;68:3092–3101. doi: 10.1128/jvi.68.5.3092-3101.1994.
    1. Garcia J.V., Miller A.D. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature. 1991;350:508–511. doi: 10.1038/350508a0.
    1. Schwartz O., Maréchal V., Le Gall S., Lemonnier F., Heard J.-M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV–1 Nef protein. Nat. Med. 1996;2:338–342. doi: 10.1038/nm0396-338.
    1. Watkins R.L., Zou W., Denton P.W., Krisko J.F., Foster J.L., Garcia J.V. In vivo analysis of highly conserved Nef activities in HIV-1 replication and pathogenesis. Retrovirology. 2013;10:125. doi: 10.1186/1742-4690-10-125.
    1. Das A.T., Berkhout B., Paraskevis D. How Polypurine Tract Changes in the HIV-1 RNA Genome Can Cause Resistance against the Integrase Inhibitor Dolutegravir. mBio. 2018;9:e00006-18. doi: 10.1128/mBio.00006-18.
    1. Julias J.G., McWilliams M.J., Sarafianos S.G., Alvord W.G., Arnold E., Hughes S.H. Effects of Mutations in the G Tract of the Human Immunodeficiency Virus Type 1 Polypurine Tract on Virus Replication and RNase H Cleavage. J. Virol. 2004;78:13315–13324. doi: 10.1128/JVI.78.23.13315-13324.2004.
    1. Jones F.D., Hughes S.H. In vitro analysis of the effects of mutations in the G-tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity. Virology. 2007;360:341–349. doi: 10.1016/j.virol.2006.10.008.
    1. Malet I., Delelis O., Nguyen T., Leducq V., Abdi B., Morand-Joubert L., Calvez V., Marcelin A.G. Variability of the HIV-1 3′ polypurine tract (3′PPT) region and implication in integrase inhibitor resistance. J. Antimicrob. Chemother. 2019;74:3440–3444. doi: 10.1093/jac/dkz377.
    1. Wei Y., Sluis-Cremer N. Mutations in the HIV-1 3′-Polypurine Tract and Integrase Strand-Transfer Inhibitor Resistance. Antimicrob. Agents Chemother. 2021;65:e02432-20. doi: 10.1128/AAC.02432-20.
    1. Acharya A., Tagny C.T., Mbanya D., Fonsah J.Y., Nchindap E., Kenmogne L., Jihyun M., Njamnshi A.K., Kanmogne G.D. Variability in HIV-1 Integrase Gene and 3’-Polypurine Tract Sequences in Cameroon Clinical Isolates, and Implications for Integrase Inhibitors Efficacy. Int. J. Mol. Sci. 2020;21:1553. doi: 10.3390/ijms21051553.
    1. Seatla K.K., Choga W.T., Mogwele M., Diphoko T., Maruapula D., Mupfumi L., Musonda R.M., Rowley C.F., Avalos A., Kasvosve I., et al. Comparison of an in-house ‘home-brew’ and commercial ViroSeq integrase genotyping assays on HIV-1 subtype C samples. PLoS ONE. 2019;14:e0224292. doi: 10.1371/journal.pone.0224292.
    1. Jones B.R., Miller R.L., Kinloch N.N., Tsai O., Rigsby H., Sudderuddin H., Shahid A., Ganase B., Brumme C.J., Harris M., et al. Genetic Diversity, Compartmentalization, and Age of HIV Proviruses Persisting in CD4(+) T Cell Subsets during Long-Term Combination Antiretroviral Therapy. J. Virol. 2020;94:e01786-19. doi: 10.1128/JVI.01786-19.
    1. Gaolathe T., Wirth K.E., Holme M.P., Makhema J., Moyo S., Chakalisa U., Yankinda E.K., Lei Q., Mmalane M., Novitsky V., et al. Botswana’s progress toward achieving the 2020 UNAIDS 90-90-90 antiretroviral therapy and virological suppression goals: A population-based survey. Lancet HIV. 2016;3:e221–e230. doi: 10.1016/S2352-3018(16)00037-0.
    1. Makhema J., Wirth K.E., Pretorius Holme M., Gaolathe T., Mmalane M., Kadima E., Chakalisa U., Bennett K., Leidner J., Manyake K., et al. Universal Testing, Expanded Treatment, and Incidence of HIV Infection in Botswana. N. Engl. J. Med. 2019;381:230–242. doi: 10.1056/NEJMoa1812281.
    1. Libin P.J.K., Deforche K., Abecasis A.B., Theys K. VIRULIGN: Fast codon-correct alignment and annotation of viral genomes. Bioinformatics. 2018;35:1763–1765. doi: 10.1093/bioinformatics/bty851.
    1. Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Proc. Nucleic Acids Symp. Ser. 1999;41:95–98.

Source: PubMed

3
Sottoscrivi