Potential Effects on Cardiorespiratory and Metabolic Status After a Concurrent Strength and Endurance Training Program in Diabetes Patients - a Randomized Controlled Trial

Daniela Bassi, Renata Gonçalves Mendes, Vivian Maria Arakelian, Flávia Cristina Rossi Caruso, Ramona Cabiddu, José Carlos Bonjorno Júnior, Ross Arena, Audrey Borghi-Silva, Daniela Bassi, Renata Gonçalves Mendes, Vivian Maria Arakelian, Flávia Cristina Rossi Caruso, Ramona Cabiddu, José Carlos Bonjorno Júnior, Ross Arena, Audrey Borghi-Silva

Abstract

Background: Concurrent aerobic and resistance training (CART) programs have been widely recommended as an important strategy to improve physiologic and functional performance in patients with chronic diseases. However, the impact of a personalized CART program in patients with type 2 diabetes (T2D) requires investigation. Therefore, the primary aim of the current study is to investigate the impact of CART programs on metabolic profile, glycemic control, and exercise capacity in patients with diabetes.

Methods: We evaluated 41 subjects with T2D (15 females and 19 males, 50.8 ± 7 years); subjects were randomized into two groups; sedentary (SG) and CART (CART-G). CART was performed over 1.10-h sessions (30-min aerobic and 30-min resistance exercises) three times/week for 12 weeks. Body composition, biochemical analyses, peripheral muscular strength, and cardiopulmonary exercise testing were primary measurements.

Results: The glycated hemoglobin HbA1c (65.4 ± 17.9 to 55.9 ± 12.7 mmol/mol), cholesterol (198.38.1 ± 50.3 to 186.8 ± 35.1 mg/dl), and homeostasis model assessment insulin resistance (HOMA-IR) (6.4 ± 6.8 to 5.0 ± 1.4) decreased in the CART-G compared to the SG. Although body weight did not significantly change after training, skinfold measurement indicated decreased body fat in the CART-G only. CART significantly enhanced muscle strength compared to the SG (p < 0.05). CART was also associated with significant increase in peak oxygen uptake and maximal workload compared to the SG (p < 0.05).

Conclusions: These data support CART as an important strategy in the treatment of patients with T2D, producing both physiologic and functional improvements.

Trial registration: Ensaiosclinicos.gov.br, RBR492q8z.

Keywords: Concurrent training program; Diabetes mellitus; HbA1c; Metabolic profile; Oxygen uptake.

Figures

Fig. 1
Fig. 1
Flowchart with randomization study
Fig. 2
Fig. 2
Comparison between changes of VO2 (ml kg−1 min−1) and changes HbA1c (mmol/mol) in response to 12 weeks of CART (filled circles) and sedentary (open circles) in diabetic patients

References

    1. Schmidt MI, Duncan BB, Azevedo e Silva G, Menezes AM, Monteiro CA, Barreto SM, et al. Chronic non-communicable diseases in Brazil: burden and current challenges. Lancet. 2011;377:1949–61. doi: 10.1016/S0140-6736(11)60135-9.
    1. Chen L, Pei J-H, Kuang J, Chen H-M, Chen Z, Li Z-W, et al. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism. 2015;64:338–47. doi: 10.1016/j.metabol.2014.10.018.
    1. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care. 2010;33:2692–6. doi: 10.2337/dc10-1548.
    1. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84. doi: 10.1016/j.cmet.2012.12.012.
    1. Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 1995;361:51–4. doi: 10.1016/0014-5793(95)00147-2.
    1. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–7. doi: 10.2337/diab.30.12.1000.
    1. Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflügers Arch. Eur. J. Physiol. 1985;403:369–76. doi: 10.1007/BF00589248.
    1. Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am. J. Physiol. 1996;270:E265–72.
    1. Vollaard NBJ, Constantin-Teodosiu D, Fredriksson K, Rooyackers O, Jansson E, Greenhaff PL, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J. Appl. Physiol. 2009;106:1479–86. doi: 10.1152/japplphysiol.91453.2008.
    1. Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol. Rev. 1991;71:541–85.
    1. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37:145–68. doi: 10.2165/00007256-200737020-00004.
    1. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS) Diabetes Care. 2010;33:1497–9. doi: 10.2337/dc09-2310.
    1. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23) BMJ. 1998;316:823–8. doi: 10.1136/bmj.316.7134.823.
    1. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann. Intern. Med. 2007;147:357–69. doi: 10.7326/0003-4819-147-6-200709180-00005.
    1. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253–62. doi: 10.1001/jama.2010.1710.
    1. Schumann M, Yli-Peltola K, Abbiss CR, Häkkinen K. Cardiorespiratory adaptations during concurrent aerobic and strength training in men and women. PLoS One. 2015;10:e0139279. doi: 10.1371/journal.pone.0139279.
    1. Wilson JM, Marin PJ, Rhea MR, Wilson SMC, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond. Res. 2012;26:2293–307. doi: 10.1519/JSC.0b013e31823a3e2d.
    1. Nelson AG, Arnall DA, Loy SF, Silvester LJ, Conlee RK. Consequences of combining strength and endurance training regimens. Phys. Ther. 1990;70:287–94.
    1. Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010;38:105–13. doi: 10.1097/JES.0b013e3181e373a2.
    1. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97. doi: 10.1161/CIRCULATIONAHA.106.634949.
    1. de SP RLC, Sá de JR, Chacra AR, Dib SA. Diabetic cardiovascular autonomic neuropathy: risk factors, clinical impact and early diagnosis. Arq. Bras. Cardiol. 2008;90:e24–31.
    1. Bredella MA, Utz AL, Torriani M, Thomas B, Schoenfeld DA, Miller KK, Anthropometry CT, DXA as predictors of GH deficiency in premenopausal women ROC curve analysis. J. Appl. Physiol. 2008;106:418–22. doi: 10.1152/japplphysiol.90998.2008.
    1. Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, Erceg DN, McCauley S, Schroeder ET. Validity and reliability of body composition analysers in children and adults. Br. J. Nutr. 2008;100:859–65. doi: 10.1017/S0007114508925460.
    1. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986;60:1327–32.
    1. Suh S-H, Paik I-Y, Jacobs K. Regulation of blood glucose homeostasis during prolonged exercise. Mol. Cells. 2007;23:272–9.
    1. Houmard JA. Effect of the volume and intensity of exercise training on insulin sensitivity. J. Appl. Physiol. 2003;96:101–6. doi: 10.1152/japplphysiol.00707.2003.
    1. LE Neder JAN. Teste de Exercício Cardiopulmonar. J. Pneumol. 2002;28:166–206.
    1. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J. Appl. Physiol. 1983;55:1558–64.
    1. Guazzi M, Arena R. CardioPulse. New clinical cardiopulmonary exercise testing joint statement from the European Society of Cardiology and American Heart Association. Eur. Heart J. 2012;33:2627–8.
    1. Myers J, de Souza CR, Borghi-Silva A, Guazzi M, Chase P, Bensimhon D, et al. A neural network approach to predicting outcomes in heart failure using cardiopulmonary exercise testing. Int. J. Cardiol. 2014;171:265–9. doi: 10.1016/j.ijcard.2013.12.031.
    1. Borghi-Silva A, Di Thommazo L, Pantoni CBF, Mendes RG, Salvini TDF, Costa D. Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD. Respirology. 2009;14:537–44. doi: 10.1111/j.1440-1843.2009.01515.x.
    1. Wilborn C, Greenwood M, Wyatt F, Bowden RGD. The effects of exercise intensity and body position on cardiovascular variables during resistance exercise. JEP Online. 2004;7:29–36.
    1. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK, American College of Sports Medicine Position Stand Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009;41:459–71. doi: 10.1249/MSS.0b013e3181949333.
    1. Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White RD. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29:1433–8. doi: 10.2337/dc06-9910.
    1. Belli T, Ribeiro LFP, Ackermann MA, Baldissera V, Gobatto CA, Galdino da Silva R. Effects of 12-week overground walking training at ventilatory threshold velocity in type 2 diabetic women. Diabetes Res. Clin. Pract. 2011;93:337–43. doi: 10.1016/j.diabres.2011.05.007.
    1. Taylor R. Interpretation of the correlation coefficient: a basic review. J. Diagnostic Med. Sonogr. 1990;6:35–9. doi: 10.1177/875647939000600106.
    1. Tagougui S, Leclair E, Fontaine P, Matran R, Marais G, Aucouturier J, et al. Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes. Med. Sci. Sports Exerc. 2015;47:231–9. doi: 10.1249/MSS.0000000000000424.
    1. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002;346:793–801. doi: 10.1056/NEJMoa011858.
    1. Vinetti G, Mozzini C, Desenzani P, Boni E, Bulla L, Lorenzetti I, et al. Supervised exercise training reduces oxidative stress and cardiometabolic risk in adults with type 2 diabetes: a randomized controlled trial. Sci. Rep. 2015;5:9238. doi: 10.1038/srep09238.
    1. Johannsen NM, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Categorical analysis of the impact of aerobic and resistance exercise training, alone and in combination, on cardiorespiratory fitness levels in patients with type 2 diabetes: results from the HART-D study. Diabetes Care. 2013;36:3305–12. doi: 10.2337/dc12-2194.
    1. Pimenta NM, Santa-Clara H, Sardinha LB, Fernhall B. Body fat responses to a 1-year combined exercise training program in male coronary artery disease patients. Obesity (Silver Spring) 2013;21:723–30. doi: 10.1002/oby.20273.
    1. Johannsen NM, Sparks LM, Zhang Z, Earnest CP, Smith SR, Church TS, et al. Determinants of the changes in glycemic control with exercise training in type 2 diabetes: a randomized trial. PLoS One. 2013;8:e62973. doi: 10.1371/journal.pone.0062973.
    1. Physical activity guidelines for diabetes [Internet]. [cited 2015 Nov 23]. Available from:
    1. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27. doi: 10.1001/jama.286.10.1218.
    1. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 2002;48:436–72.
    1. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25:2335–41. doi: 10.2337/diacare.25.12.2335.
    1. Liu Y, Liu S-X, Cai Y, Xie K-L, Zhang W-L, Zheng F. Effects of combined aerobic and resistance training on the glycolipid metabolism and inflammation levels in type 2 diabetes mellitus. J. Phys. Ther. Sci. 2015;27:2365–71. doi: 10.1589/jpts.27.2365.
    1. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31:1473–8. doi: 10.2337/dc08-0545.
    1. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med. 2004;141:421–31. doi: 10.7326/0003-4819-141-6-200409210-00007.
    1. The International Expert Committee International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327–34. doi: 10.2337/dc09-9033.
    1. Gray A, Raikou M, McGuire A, Fenn P, Stevens R, Cull C, et al. Cost effectiveness of an intensive blood glucose control policy in patients with type 2 diabetes: economic analysis alongside randomised controlled trial (UKPDS 41). United Kingdom Prospective Diabetes Study Group. BMJ. 2000;320:1373–8. doi: 10.1136/bmj.320.7246.1373.
    1. Vergès B, Patois-Vergès B, Iliou M-C, Simoneau-Robin I, Bertrand J-H, Feige J-M, et al. Influence of glycemic control on gain in VO2 peak, in patients with type 2 diabetes enrolled in cardiac rehabilitation after an acute coronary syndrome. The prospective DARE study. BMC Cardiovasc. Disord. 2015;15:64. doi: 10.1186/s12872-015-0055-8.
    1. Awotidebe TO, Adedoyin RA, Yusuf AO, Mbada CE, Opiyo R, Maseko FC. Comparative functional exercise capacity of patients with type 2-diabetes and healthy controls: a case control study. Pan Afr. Med. J. 2014;19:257. doi: 10.11604/pamj.2014.19.257.4798.
    1. Sénéchal M, Swift DL, Johannsen NM, Blair SN, Earnest CP, Lavie CJ, et al. Changes in body fat distribution and fitness are associated with changes in hemoglobin A1c after 9 months of exercise training: results from the HART-D study. Diabetes Care. 2013;36:2843–9. doi: 10.2337/dc12-2428.
    1. Ryan AS, Pratley RE, Elahi D, Goldberg AP. Changes in plasma leptin and insulin action with resistive training in postmenopausal women. Int. J. Obes. Relat. Metab. Disord. 2000;24:27–32. doi: 10.1038/sj.ijo.0801080.
    1. Larose J, Sigal RJ, Khandwala F, Prud’homme D, Boulé NG, Kenny GP. Associations between physical fitness and HbA1(c) in type 2 diabetes mellitus. Diabetologia. 2011;54:93–102. doi: 10.1007/s00125-010-1941-3.
    1. Egger A, Niederseer D, Diem G, Finkenzeller T, Ledl-Kurkowski E, Forstner R, et al. Different types of resistance training in type 2 diabetes mellitus: effects on glycaemic control, muscle mass and strength. Eur. J. Prev. Cardiol. 2013;20:1051–60. doi: 10.1177/2047487312450132.
    1. Cauza E, Strehblow C, Metz-Schimmerl S, Strasser B, Hanusch-Enserer U, Kostner K, et al. Effects of progressive strength training on muscle mass in type 2 diabetes mellitus patients determined by computed tomography. Wien. Med. Wochenschr. 2009;159:141–7. doi: 10.1007/s10354-009-0641-4.
    1. Maiorana A, O’Driscoll G, Goodman C, Taylor R, Green D. Combined aerobic and resistance exercise improves glycemic control and fitness in type 2 diabetes. Diabetes Res. Clin. Pract. 2002;56:115–23. doi: 10.1016/S0168-8227(01)00368-0.
    1. Sousa N, Mendes R, Abrantes C, Sampaio J, Oliveira J. Effectiveness of combined exercise training to improve functional fitness in older adults: a randomized controlled trial. Geriatr. Gerontol. Int. 2014;14:892–8. doi: 10.1111/ggi.12188.
    1. Staron RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE, Hagerman FC, et al. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J. Appl. Physiol. 1991;70:631–40.
    1. Yuing Farias T, Santos-Lozano A, Solís Urra P, Cristi-Montero C. effects of training and detraining on glycosylated haemoglobin, glycaemia and lipid profile in type-ii diabetics. Nutr. Hosp. [Internet]. [cited 2015 Nov 25];32:1729–34. Available from: .
    1. Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, et al. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation. 2000;101:828–33. doi: 10.1161/01.CIR.101.7.828.
    1. Dela F, Kjaer M. Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem. 2006;42:75–88. doi: 10.1042/bse0420075.
    1. Umpierre D, Ribeiro PAB, Kramer CK, Leitão CB, Zucatti ATN, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9. doi: 10.1001/jama.2011.576.

Source: PubMed

3
Sottoscrivi