Radial Artery and Ulnar Artery Occlusions Following Coronary Procedures and the Impact of Anticoagulation: ARTEMIS (Radial and Ulnar ARTE ry Occlusion M eta-Analys IS) Systematic Review and Meta-Analysis

George Hahalis, Konstantinos Aznaouridis, Gregory Tsigkas, Periklis Davlouros, Ioanna Xanthopoulou, Nikolaos Koutsogiannis, Ioanna Koniari, Marianna Leopoulou, Olivier Costerousse, Dimitris Tousoulis, Olivier F Bertrand, George Hahalis, Konstantinos Aznaouridis, Gregory Tsigkas, Periklis Davlouros, Ioanna Xanthopoulou, Nikolaos Koutsogiannis, Ioanna Koniari, Marianna Leopoulou, Olivier Costerousse, Dimitris Tousoulis, Olivier F Bertrand

Abstract

Background: Incidence of radial artery occclusions (RAO) and ulnar artery occclusions (UAO) in coronary procedures, factors predisposing to forearm arteries occlusion, and the benefit of anticoaggulation vary significantly in existing literature. We sought to determine the incidence of RAO/UAO and the impact of anticoagulation intensity.

Methods and results: Meta-analysis of 112 studies assessing RAO and/or UAO (N=46 631) were included. Overall, there was no difference between crude RAO and UAO rates (5.2%; 95% confidence interval [CI], 4.4-6.0 versus 4.0%; 95% CI, 2.8-5.8; P=0.171). The early occlusion rate (in-hospital or within 7 days after procedure) was higher than the late occlusion rate. The detection rate of occlusion was higher with vascular ultrasonography compared with clinical evaluation only. Low-dose heparin was associated with a significantly higher RAO rate compared with high-dose heparin (7.2%; 95% CI, 5.5-9.4 versus 4.3%; 95% CI, 3.5-5.3; Q=8.81; P=0.003). Early occlusions in low-dose heparin cohorts mounted at 8.0% (95% CI, 6.1-10.6). The RAO rate was higher after diagnostic angiographies compared with coronary interventions, presumably attributed to the higher intensity of anticoagulation in the latter group. Hemostatic techniques (patent versus nonpatent hemostasis), geography (US versus non-US cohorts) and sheath size did not impact on vessel patency.

Conclusions: RAO and UAO occur with similar frequency and in the order of 7% to 8% when evaluated early by vascular ultrasonography following coronary procedures. More-intensive anticoagulation is protective. Late recanalization occurs in a substantial minority of patients.

Keywords: coronary angiography; radial occlusion; transradial; transulnar; ulnar occlusion.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Electronic literature search. Summary of the literature search results.
Figure 2
Figure 2
Overall rates of radial and ulnar occlusions. The diamonds and their width represent the pooled rates and the 95% CI (confidence interval), respectively.
Figure 3
Figure 3
Rates of early vs late arterial occlusions (combined radial and ulnar occlusions) in studies reporting both early and late occlusions. Diamonds and their width as in Figure 1. CI indicates confidence interval.
Figure 4
Figure 4
Effect of intensity of anticoaggulation on radial occlusion rate in unselected (randomized and observational) studies. Diamonds and their width as in Figure 1. CI indicates confidence interval.
Figure 5
Figure 5
Effect of intensity of anticoaggulation on radial occlusion rate in randomized studies. Squares indicate the occlusion rate and lines indicate the respective 95% confidence interval (CI). The size of the squares corresponds to the number of subjects in each study. Diamonds and their width as in Figure 1.
Figure 6
Figure 6
Effect of procedural characteristics on radial occlusion rates. Diamonds and their width as in Figure 1. CAG indicates coronary angiography; CI, confidence interval; PCI, percutaneous coronary intervention.
Figure 7
Figure 7
Effect of study design characteristics on radial occlusion rates. Diamonds and their width as in Figure 1. CI indicates confidence interval.
Figure 8
Figure 8
Publication bias and its potential impact. The funnel plots of precision plot a study's effect size against its precision, which is the inverse of standard error. The white circles represent individual original studies and the white diamond is the pooled mean difference and 95% CI for the meta‐analysis. Large studies tend to appear toward the top and cluster near the mean effect. Small studies tend to appear toward the bottom and are dispersed across a range of values. A symmetric funnel plot (white circles symmetrically around the mean effect) indicates absence of publication bias. To check for publication bias, the trim‐and‐fill method imputes the—theoretically—missing studies (shown in black circles) and then recomputes the pooled effect (black diamond). Although the plots were slightly asymmetric, there was no significant difference between the recomputed effect and the respective effects derived from the original studies, suggesting absence of significant publication bias. CI indicates confidence interval; RAO, radial artery occlusion.

References

    1. Bertrand OF, Bernat I. Radial artery occlusion: still the Achille's heel of transradial approach or is it? Coron Artery Dis. 2015;26:97–98.
    1. Bertrand OF, Rao SV, Pancholy S, Jolly SS, Rodés‐Cabau J, Larose E, Costerousse O, Hamon M, Mann T. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv. 2010;3:1022–1031.
    1. Hamon M, Pristipino C, Di Mario C, Nolan J, Ludwig J, Tubaro M, Sabate M, Mauri‐Ferré J, Huber K, Niemelä K, Haude M, Wijns W, Dudek D, Fajadet J, Kiemeneij F. Consensus document on the radial approach in percutaneous cardiovascular interventions: position paper by the European Association of Percutaneous Cardiovascular Interventions and Working Groups on Acute Cardiac Care and Thrombosis of the European Society of Cardiology. EuroIntervention. 2013;8:1242–1251.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta‐analyses. BMJ. 2003;327:557–560.
    1. Altman DG, Bland JM. Interaction revisited: the difference between two estimates. BMJ. 2003;326:219.
    1. Duval S, Tweedie R. Trim and fill: a simple funnel‐plot‐based method of testing and adjusting for publication bias in meta‐analysis. Biometrics. 2000;56:455–463.
    1. Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive Meta Analysis Version 2. Englewood, NJ: Biostat; 2005.
    1. Campeau L. Percutaneous radial artery approach for coronary angiography. Cathet Cardiovasc Diagn. 1989;16:3–7.
    1. Otaki M. Percutaneous transradial approach for coronary angiography. Cardiology. 1992;81:330–333.
    1. Kiemeneij F, Laarman GJ. Percutaneous transradial artery approach for coronary Palmaz‐Schatz stent implantation. Am Heart J. 1994;128:167–174.
    1. Lotan C, Hasin Y, Mosseri M, Rozenman Y, Admon D, Nassar H, Gotsman MS. Transradial approach for coronary angiography and angioplasty. Am J Cardiol. 1995;76:164–167.
    1. Kiemeneij F, Laarman GJ, de Melker E. Transradial artery coronary angioplasty. Am Heart J. 1995;129:1–7.
    1. Spaulding C, Lefèvre T, Funck F, Thébault B, Chauveau M, Ben Hamda K, Chalet Y, Monségu H, Tsocanakis O, Py A, Guillard N, Weber S. Left radial approach for coronary angiography: results of a prospective study. Cathet Cardiovasc Diagn. 1996;39:365–370.
    1. Kiemeneij F, Laarman GJ, Slagboom T, van der Wieken R. Outpatient coronary stent implantation. J Am Coll Cardiol. 1997;29:323–327.
    1. Chatelain P, Arceo A, Rombaut E, Verin V, Urban P. New device for compression of the radial artery after diagnostic and interventional cardiac procedures. Cathet Cardiovasc Diagn. 1997;40:297–300.
    1. Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol. 1997;29:1269–1275.
    1. Stella PR, Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. Incidence and outcome of radial artery occlusion following transradial artery coronary angioplasty. Cathet Cardiovasc Diagn. 1997;40:156–158.
    1. Saito S, Miyake S, Hosokawa G, Tanaka S, Kawamitsu K, Kaneda H, Ikei H, Shiono T. Transradial coronary intervention in Japanese patients. Catheter Cardiovasc Interv. 1999;46:37–41.
    1. Saito S, Ikei H, Hosokawa G, Tanaka S. Influence of the ratio between radial artery inner diameter and sheath outer diameter on radial artery flow after transradial coronary intervention. Catheter Cardiovasc Interv. 1999;46:173–178.
    1. Nagai S, Abe S, Sato T, Hozawa K, Yuki K, Hanashima K, Tomoike H. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol. 1999;83:180–186.
    1. Wu SS, Galani RJ, Bahro A, Moore JA, Burket MW, Cooper CJ. 8 french transradial coronary interventions: clinical outcome and late effects on the radial artery and hand function. J Invasive Cardiol. 2000;12:605–612.
    1. Pillay D, Lam KH, Muda MN, Hamid Z. Transradial coronary angioplasty and stenting—immediate results and 3‐month clinical follow‐up in the first 50 patients performed at the National Heart Institute. Med J Malaysia. 2000;55:467–472.
    1. Brito JC, Azevedo A Jr, Oliveira A, Von Sohsten R, Santos Filho A, Carvalho H. Transradial approach for coronary interventions. Arq Bras Cardiol. 2001;76:369–378.
    1. Dahm JB, Vogelgesang D, Hummel A, Staudt A, Völzke H, Felix SB. A randomized trial of 5 vs. 6 French transradial percutaneous coronary interventions. Catheter Cardiovasc Interv. 2002;57:172–176.
    1. Bagger H, Kristensen JH, Christensen PD, Klausen IC. Routine transradial coronary angiography in unselected patients. J Invasive Cardiol. 2005;17:139–141.
    1. Kim JY, Yoon J, Jung HS, Ko JY, Yoo BS, Hwang SO, Lee SH, Choe KH. Feasibility of the radial artery as a vascular access route in performing primary percutaneous coronary intervention. Yonsei Med J. 2005;46:503–510.
    1. Venkatesh K, Mann T. Transitioning from heparin to bivalirudin in patients undergoing ad hoc transradial interventional procedures: a pilot study. J Invasive Cardiol. 2006;18:120–124.
    1. Aptecar E, Pernes JM, Chabane‐Chaouch M, Bussy N, Catarino G, Shahmir A, Bougrini K, Dupouy P. Transulnar versus transradial artery approach for coronary angioplasty: the PCVI‐CUBA study. Catheter Cardiovasc Interv. 2006;67:711–720.
    1. Sanmartin M, Gomez M, Rumoroso JR, Sadaba M, Martinez M, Baz JA, Iniguez A. Interruption of blood flow during compression and radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv. 2007;70:185–189.
    1. Pancholy S, Coppola J, Patel T, Roke‐Thomas M. Prevention of radial artery occlusion‐patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72:335–340.
    1. Takeshita S, Shiono T, Takagi A, Ito T, Saito S. Percutaneous coronary intervention using a novel 4‐French coronary accessor. Catheter Cardiovasc Interv. 2008;72:222–227.
    1. Kindel M, Rüppel R. Hydrophilic‐coated sheaths increase the success rate of transradial coronary procedures and reduce patient discomfort but do not reduce the occlusion rate: randomized single‐blind comparison of coated vs. non‐coated sheaths. Clin Res Cardiol. 2008;97:609–614.
    1. Yan ZX, Zhou YJ, Zhao YX, Liu YY, Shi DM, Guo YH, Cheng WJ. Safety and feasibility of transradial approach for primary percutaneous coronary intervention in elderly patients with acute myocardial infarction. Chin Med J. 2008;121:782–786.
    1. Cubero JM, Lombardo J, Pedrosa C, Diaz‐Bejarano D, Sanchez B, Fernandez V, Gomez C, Vazquez R, Molano FJ, Pastor LF. Radial compression guided by mean artery pressure versus standard compression with a pneumatic device (RACOMAP). Catheter Cardiovasc Interv. 2009;73:467–472.
    1. Pancholy SB. Impact of two different hemostatic devices on radial artery outcomes after transradial catheterization. J Invasive Cardiol. 2009;21:101–104.
    1. Pancholy SB. Comparison of the effect of intra‐arterial versus intravenous heparin on radial artery occlusion after transradial catheterization. Am J Cardiol. 2009;104:1083–1085.
    1. Brueck M, Bandorski D, Kramer W, Wieczorek M, Höltgen R, Tillmanns H. A randomized comparison of transradial versus transfemoral approach for coronary angiography and angioplasty. JACC Cardiovasc Interv. 2009;2:1047–1054.
    1. Yan ZX, Zhou YJ, Zhao YX, Zhou ZM, Yang SW, Wang ZJ. Anatomical study of forearm arteries with ultrasound for percutaneous coronary procedures. Circ J. 2010;74:686–692.
    1. Schiano P, Barbou F, Chenilleau MC, Louembe J, Monsegu J. Adjusted weight anticoagulation for radial approach in elective coronarography: the AWARE coronarography study. EuroIntervention. 2010;6:247–250.
    1. Li YZ, Zhou YJ, Zhao YX, Guo YH, Liu YY, Shi DM, Wang ZJ, Jia DA, Yang SW, Nie B, Han HY, Hu B. Safety and efficacy of transulnar approach for coronary angiography and intervention. Chin Med J. 2010;123:1774–1779.
    1. Caussin C, Gharbi M, Durier C, Ghostine S, Pesenti‐Rossi D, Rahal S, Brenot P, Barri M, Durup F, Lancelin B. Reduction in spasm with a long hydrophylic transradial sheath. Catheter Cardiovasc Interv. 2010;76:668–672.
    1. From AM, Gulati R, Prasad A, Rihal CS. Sheathless transradial intervention using standard guide catheters. Catheter Cardiovasc Interv. 2010;76:911–916.
    1. Mamas M, D'Souza S, Hendry C, Ali R, Iles‐Smith H, Palmer K, El‐Omar M, Fath‐Ordoubadi F, Neyses L, Fraser DG. Use of the sheathless guide catheter during routine transradial percutaneous coronary intervention: a feasibility study. Catheter Cardiovasc Interv. 2010;75:596–602.
    1. Mizuno S, Takeshita S, Taketani Y, Saito S. Percutaneous coronary intervention using a virtual 3‐Fr guiding catheter. Catheter Cardiovasc Interv. 2010;75:983–988.
    1. Plante S, Cantor WJ, Goldman L, Miner S, Quesnelle A, Ganapathy A, Popel A, Bertrand OF. Comparison of bivalirudin versus heparin on radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv. 2010;76:654–658.
    1. Zankl AR, Andrassy M, Volz C, Ivandic B, Krumsdorf U, Katus HA, Blessing E. Radial artery thrombosis following transradial coronary angiography: incidence and rationale for treatment of symptomatic patients with low‐molecular‐weight heparins. Clin Res Cardiol. 2010;99:841–847.
    1. Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, Perry RA, Morris JL. A randomized comparison of TR band and radistop hemostatic compression devices after transradial coronary intervention. Catheter Cardiovasc Interv. 2010;76:660–667.
    1. Feray H, Izgi C, Cetiner D, Men EE, Saltan Y, Baltay A, Kahraman R. Effectiveness of enoxaparin for prevention of radial artery occlusion after transradial cardiac catheterization. J Thromb Thrombolysis. 2010;29:322–325.
    1. Bernat I, Bertrand OF, Rokyta R, Kacer M, Pesek J, Koza J, Smid M, Bruhova H, Sterbakova G, Stepankova L, Costerousse O. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. Am J Cardiol. 2011;107:1698–1701.
    1. Egred M. Feasibility and safety of 7‐Fr radial approach for complex PCI. J Interv Cardiol. 2011;24:383–388.
    1. Politi L, Aprile A, Paganelli C, Amato A, Zoccai GB, Sgura F, Monopoli D, Rossi R, Modena MG, Sangiorgi GM. Randomized clinical trial on short‐time compression with Kaolin‐filled pad: a new strategy to avoid early bleeding and subacute radial artery occlusion after percutaneous coronary intervention. J Interv Cardiol. 2011;24:65–72.
    1. Singh A, Edasery D, Noor A, Bhasin N, Kaplan B, Jauhar R. Use of low‐dose heparin with bivalirudin for ad‐hoc transradial coronary interventions: experience from a single center. J Invasive Cardiol. 2011;23:101–104.
    1. Chiam PT, Liu B, Wong AS, Wong PE, Lim ST, Koh TH, Lim VY. Comparison of novel 6.5 Fr sheathless guiding catheters versus 5 Fr guiding catheters for transradial coronary intervention. EuroIntervention. 2011;7:930–935.
    1. Youn YJ, Yoon J, Han SW, Lee JW, Sung JK, Ahn SG, Kim JY, Yoo BS, Lee SH, Choe KH. Feasibility of transradial coronary intervention using a sheathless guiding catheter in patients with small radial artery. Korean Circ J. 2011;41:143–148.
    1. Park KH, Park DW, Kim MK, Kim HS, Park WJ, Cho GY, Choi YJ. Effects of sheath injury and trimetazidine on endothelial dysfunction of radial artery after transradial catheterization. J Interv Cardiol. 2012;25:411–417.
    1. Honda T, Fujimoto K, Miyao Y, Koga H, Hirata Y. Access site‐related complications after transradial catheterization can be reduced with smaller sheath size and statins. Cardiovasc Interv Ther. 2012;27:174–180.
    1. Pancholy SB, Bertrand OF, Patel T. Comparison of a priori versus provisional heparin therapy on radial artery occlusion after transradial coronary angiography and patent hemostasis (from the PHARAOH Study). Am J Cardiol. 2012;110:173–176.
    1. Pancholy SB, Sanghvi KA, Patel TM. Radial artery access technique evaluation trial: randomized comparison of Seldinger versus modified Seldinger technique for arterial access for transradial catheterization. Catheter Cardiovasc Interv. 2012;80:288–291.
    1. Uhlemann M, Möbius‐Winkler S, Mende M, Eitel I, Fuernau G, Sandri M, Adams V, Thiele H, Linke A, Schuler G, Gielen S. The Leipzig prospective vascular ultrasound registry in radial artery catheterization: impact of sheath size on vascular complications. JACC Cardiovasc Interv. 2012;5:36–43.
    1. de Andrade PB, Tebet MA, Nogueira EF, Esteves VC, de Andrade MV, Labrunie A, Piva e Mattos LA. Transulnar approach as an alternative access site for coronary invasive procedures after transradial approach failure. Am Heart J. 2012;164:462–467.
    1. Beyer AT, Ng R, Singh A, Zimmet J, Shunk K, Yeghiazarians Y, Ports TA, Boyle AJ. Topical nitroglycerin and lidocaine to dilate the radial artery prior to transradial cardiac catheterization: a randomized, placebo‐controlled, double‐blind clinical trial: the PRE‐DILATE Study. Int J Cardiol. 2013;168:2575–2578.
    1. Tewari S, Sharma N, Kapoor A, Syal SK, Kumar S, Garg N, Goel PK. Comparison of transradial and transfemoral artery approach for percutaneous coronary angiography and angioplasty: a retrospective seven‐year experience from a north Indian center. Indian Heart J. 2013;65:378–387.
    1. Tuncez A, Kaya Z, Aras D, Yıldız A, Gül EE, Tekinalp M, Karakaş MF, Kısacık HL. Incidence and predictors of radial artery occlusion associated transradial catheterization. Int J Med Sci. 2013;10:1715–1719.
    1. Chugh SK, Chugh S, Chugh Y, Rao SV. Feasibility and utility of pre‐procedure ultrasound imaging of the arm to facilitate transradial coronary diagnostic and interventional procedures (PRIMAFACIE‐TRI). Catheter Cardiovasc Interv. 2013;82:64–73.
    1. Kotowycz MA, Johnston KW, Ivanov J, Asif N, Almoghairi AM, Choudhury A, Nagy CD, Sibbald M, Chan W, Seidelin PH, Barolet AW, Overgaard CB, Džavík V. Predictors of radial artery size in patients undergoing cardiac catheterization: insights from the Good Radial Artery Size Prediction (GRASP) study. Can J Cardiol. 2014;30:211–216.
    1. Tumscitz C, Pirani L, Tebaldi M, Campo G, Biscaglia S. Seven french radial artery access for PCI: a prospective single‐center experience. Int J Cardiol. 2014;176:1074–1075.
    1. Yurtdaş M, Kaya Y, Gönüllü E. Transradial approach in the diagnosis and treatment of coronary artery disease: a 2‐center experience. Turk J Med Sci. 2014;44:666–673.
    1. Aminian A, Dolatabadi D, Lefebvre P, Zimmerman R, Brunner P, Michalakis G, Lalmand J. Initial experience with the Glidesheath Slender for transradial coronary angiography and intervention: a feasibility study with prospective radial ultrasound follow‐up. Catheter Cardiovasc Interv. 2014;84:436–442.
    1. Markovic S, Imhof A, Kunze M, Rottbauer W, Wöhrle J. Standardized radial approach reduces access site complications: a prospective observational registry. Coron Artery Dis. 2015;26:56–59.
    1. Hu H, Fu Q, Chen W, Wang D, Hua X, Chen B. A prospective randomized comparison of left and right radial approach for percutaneous coronary angiography in Asian populations. Clin Interv Aging. 2014;9:963–968.
    1. Pancholy SB, Ahmed I, Bertrand OF, Patel T. Frequency of radial artery occlusion after transradial access in patients receiving warfarin therapy and undergoing coronary angiography. Am J Cardiol. 2014;113:211–214.
    1. Takeshita S, Asano H, Hata T, Hibi K, Ikari Y, Kan Y, Katsuki T, Kawasaki T, Masutani M, Matsumura T, Premchand RK, Rao SP, Suzuki T, Takahashi A, Takeda R, Tanaka S, Yamazaki S, Yin WH, Yoshimachi F, Saito S; NAUSICA Trial Investigators . Comparison of frequency of radial artery occlusion after 4Fr versus 6Fr transradial coronary intervention (from the Novel Angioplasty USIng Coronary Accessor Trial). Am J Cardiol. 2014;113:1986–1989.
    1. Geng W, Fu X, Gu X, Jiang Y, Fan W, Wang Y, Li W, Xing K, Liu C. Safety and feasibility of transulnar versus transradial artery approach for coronary catheterization in non‐selective patients. Chin Med J. 2014;127:1222–1228.
    1. Buturak A, Gorgulu S, Norgaz T, Voyvoda N, Sahingoz Y, Degirmencioglu A, Dagdelen S. The long‐term incidence and predictors of radial artery occlusion following a transradial coronary procedure. Cardiol J. 2014;21:350–356.
    1. Liu J, Fu XH, Xue L, Wu WL, Gu XS, Li SQ. A comparative study of transulnar and transradial artery access for percutaneous coronary intervention in patients with acute coronary syndrome. J Interv Cardiol. 2014;27:525–530.
    1. Dharma S, Kedev S, Patel T, Kiemeneij F, Gilchrist IC. A novel approach to reduce radial artery occlusion after transradial catheterization: postprocedural/prehemostasis intra‐arterial nitroglycerin. Catheter Cardiovasc Interv. 2015;85:818–825.
    1. Cong X, Huang Z, Wu J, Wang J, Wen F, Fang L, Fan M, Liang C. Randomized comparison of 3 hemostasis techniques after transradial coronary intervention. J Cardiovasc Nurs. 2016;31:445–451.
    1. Lisowska A, Knapp M, Tycińska A, Sielatycki P, Sawicki R, Kralisz P, Musiał WJ. Radial access during percutaneous interventions in patients with acute coronary syndromes: should we routinely monitor radial artery patency by ultrasonography promptly after the procedure and in long‐term observation? Int J Cardiovasc Imaging. 2015;31:131–136.
    1. Garg N, Madan BK, Khanna R, Sinha A, Kapoor A, Tewari S, Kumar S, Goel PK. Incidence and predictors of radial artery occlusion after transradial coronary angioplasty: Doppler‐guided follow‐up study. J Invasive Cardiol. 2015;27:106–112.
    1. Hahalis G, Xathopoulou I, Tsigkas G, Almpanis G, Christodoulou I, Grapsas N, Davlouros P, Koniari I, Deftereos S, Raisakis K, Christopoulou G, Giannopoulos G, Kounis N, Pyrgakis V, Alexopoulos D. A comparison of low versus standard heparin dose for prevention of forearm artery occlusion after 5 French coronary angiography. Int J Cardiol. 2015;187:404–410.
    1. Aykan AÇ, Gökdeniz T, Gül I, Kalaycıoğlu E, Çetin M, Hatem E, Çavuşoğlu IG, Karabay CY, Güler A, Aykan DA, Yıldız M. Comparison of low dose versus standard dose heparin for radial approach in elective coronary angiography? Int J Cardiol. 2015;187:389–392.
    1. Tian J, Chu YS, Sun J, Jiang TM. Ulnar artery compression: a feasible and effective approach to prevent the radial artery occlusion after coronary intervention. Chin Med J (Engl). 2015;128:795–798.
    1. Abdelaal E, Rimac G, Plourde G, MacHaalany J, Roy L, Tardif MA, Costerousse O, Pancholy SB, Bertrand OF. 4Fr in 5Fr sheathless technique with standard catheters for transradial coronary interventions: technical challenges and persisting issues. Catheter Cardiovasc Interv. 2015;85:809–815.
    1. Degirmencioglu A, Buturak A, Zencirci E, Karakus G, Güvenc TS, Akyol A, Esen A, Demirci Y, Sipahi I, Dagdelen S, Norgaz T, Gorgulu S. Comparison of effects of low‐ versus high‐dose heparin on access‐site complications during transradial coronary angiography: a double‐blind randomized study. Cardiology. 2015;131:142–148.
    1. Gokhroo R, Kishor K, Ranwa B, Bisht D, Gupta S, Padmanabhan D, Avinash A. Ulnar artery interventions non‐inferior to radial approach: AJmer Ulnar ARtery (AJULAR) intervention working group study results. J Invasive Cardiol. 2016;28:1–8.
    1. van Leeuwen MA, van Mieghem NM, Lenzen MJ, Selles RW, Hoefkens MF, Zijlstra F, van Royen N. The effect of transradial coronary catheterization on upper limb function. JACC Cardiovasc Interv. 2015;8:515–523.
    1. Peruga JP, Peruga JZ, Kasprzak JD, Kręcki R, Jankowski Ł, Zając P, Plewka M. Ultrasound evaluation of forearm arteries in patients undergoing percutaneous coronary intervention via radial artery access: results of one‐year follow‐up. Kardiol Pol. 2015;73:502–510.
    1. Yoshimachi F, Takagawa Y, Terai H, Takahashi A, Shimada Y, Katsuki T, Tohara S, Ueno H, Takada M, Shiode N, Yamada K, Kinoshita N, Honda T, Asano H, Takeshita S, Koiwa H, Shin T, Masutani M, Matsukage T, Saito S, Ikari Y; V3 Registry Investigators . A prospective multicenter study using a virtual 3 Fr percutaneous coronary intervention system: the V3 Registry. J Invasive Cardiol. 2017;29:16–23.
    1. Bi XL, Fu XH, Gu XS, Wang YB, Li W, Wei LY, Fan YM, Bai SR. Influence of puncture site on radial artery occlusion after transradial coronary intervention. Chin Med J (Engl). 2016;129:898–902.
    1. Yoshimachi F, Kiemeneij F, Masutani M, Matsukage T, Takahashi A, Ikari Y. Safety and feasibility of the new 5 Fr Glidesheath Slender. Cardiovasc Interv Ther. 2016;31:38–41.
    1. Levin D, Adawi S, Halon DA, Shiran A, Asmer I, Rubinshtein R, Jaffe R. Long‐term radial artery patency following transradial coronary catheterization via a 7‐Fr sheath. Isr Med Assoc J. 2016;18:290–293.
    1. Roghani F, Shirani B, Hashemifard O. The effect of low dose versus standard dose of arterial heparin on vascular complications following transradial coronary angiography: randomized controlled clinical trial. ARYA Atheroscler. 2016;12:10–17.
    1. Dautov R, Ribeiro HB, Abdul‐Jawad Altisent O, Nombela‐Franco L, Gibrat C, Nguyen CM, Rinfret S. Effectiveness and safety of the transradial 8Fr sheathless approach for revascularization of chronic total occlusions. Am J Cardiol. 2016;118:785–789.
    1. Costa F, van Leeuwen MA, Daemen J, Diletti R, Kauer F, van Geuns RJ, Ligthart J, Witberg K, Zijlstra F, Valgimigli M, Van Mieghem NM. The Rotterdam radial access research: ultrasound‐based radial artery evaluation for diagnostic and therapeutic coronary procedures. Circ Cardiovasc Interv. 2016;9:e003129.
    1. Koutouzis MJ, Maniotis CD, Avdikos G, Tsoumeleas A, Andreou C, Kyriakides ZS. ULnar artery Transient compression facilitating Radial Artery patent hemostasis (ULTRA): a novel technique to reduce radial artery occlusion after transradial coronary catheterization. J Invasive Cardiol. 2016;28:451–454.
    1. Noble S, Tessitore E, Gencer B, Righini M, Robert‐Ebadi H, Roffi M, Bonvini RF. A randomized study of sheathless vs standard guiding catheters for transradial percutaneous coronary interventions. Can J Cardiol. 2016;32:1425–1432.
    1. Andrade PB, Mattos LA, Rinaldi FS, Bienert IC, Barbosa RA, Labrunie A, Tebet M, Esteves V, Abizaid A, Sousa AR. Comparison of a vascular closure device versus the radial approach to reduce access site complications in non‐ST‐segment elevation acute coronary syndrome patients: the angio‐seal versus the radial approach in acute coronary syndrome trial. Catheter Cardiovasc Interv. 2017;89:976–982.
    1. Turan B, Erkol A, Mutlu A, Daşli T, Erden İ. Effectiveness of left Judkins catheter as a single multipurpose catheter in transradial coronary angiography from right radial artery: a randomized comparison with conventional two‐catheter strategy. J Interv Cardiol. 2016;29:257–264.
    1. Gokhroo R, Bisht D, Padmanabhan D, Gupta S, Kishor K, Ranwa B. Feasibility of ulnar artery for cardiac catheterization: AJmer ULnar ARtery (AJULAR) catheterization study. Catheter Cardiovasc Interv. 2015;86:42–48.
    1. Terashima M, Meguro T, Takeda H, Endoh N, Ito Y, Mitsuoka M, Ohtomo T, Murai O, Fujiwara S, Honda H, Miyazaki Y, Kuhara R, Kawashima O, Isoyama S. Percutaneous ulnar artery approach for coronary angiography: a preliminary report in nine patients. Catheter Cardiovasc Interv. 2001;53:410–414.
    1. Dashkoff N, Dashkoff PB, Zizzi JA Sr, Wadhwani J, Zizzi JA Jr. Ulnar artery cannulation for coronary angiography and percutaneous coronary intervention: case reports and anatomic considerations. Catheter Cardiovasc Interv. 2002;55:93–96.
    1. Limbruno U, Rossini R, De Carlo M, Amoroso G, Ciabatti N, Petronio AS, Micheli A, Mariani M. Percutaneous ulnar artery approach for primary coronary angioplasty: safety and feasibility. Catheter Cardiovasc Interv. 2004;61:56–59.
    1. Gourassas JT, Papadopoulos CE, Louridas GE. Percutaneous ulnar artery approach for coronary angioplasty. Hellenic J Cardiol. 2004;45:121–123.
    1. Lanspa TJ, Reyes AP, Oldemeyer JB, Williams MA. Ulnar artery catheterization with occlusion of corresponding radial artery. Catheter Cardiovasc Interv. 2004;61:211–213.
    1. Lanspa TJ, Williams MA, Heirigs RL. Effectiveness of ulnar artery catheterization after failed attempt to cannulate a radial artery. Am J Cardiol. 2005;95:1529–1530.
    1. Rath PC, Purohit BV, Navasundi GB, Sitaram, Reddy AM. Coronary angiogram and intervention through transulnar approach. Indian Heart J. 2005;57:324–326.
    1. Mangin L, Bertrand OF, De La Rochellière R, Proulx G, Lemay R, Barbeau G, Gleeton O, Rodés‐Cabau J, Nguyen CM, Roy L. The transulnar approach for coronary intervention: a safe alternative to transradial approach in selected patients. J Invasive Cardiol. 2005;17:77–79.
    1. Aptecar E, Dupouy P, Chabane‐Chaouch M, Bussy N, Catarino G, Shahmir A, Elhajj Y, Pernes JM. Percutaneous transulnar artery approach for diagnostic and therapeutic coronary intervention. J Invasive Cardiol. 2005;17:312–317.
    1. Knebel AV, Cardoso CO, Correa Rodrigues LH, Sarmento‐Leite RE, de Quadros AS, Mascia Gottschall CA. Safety and feasibility of transulnar cardiac catheterization. Tex Heart Inst J. 2008;35:268–272.
    1. Andrade PB, Tebet MA, Andrade MV, Labrunie A, Mattos LA. Primary percutaneous coronary intervention through transulnar approach: safety and effectiveness. Arq Bras Cardiol. 2008;91:e49–e52, e41‐4.
    1. Vassilev D, Smilkova D, Gil R. Ulnar artery as access site for cardiac catheterization: anatomical considerations. J Interv Cardiol. 2008;21:56–60.
    1. Hussein H, Gan HW, Fang HY, Wu CJ. Bilateral percutaneous ulnar artery approach for retrograde chronic total occlusion intervention. Int Heart J. 2010;51:137–140.
    1. Agostoni P, Zuffi A, Biondi‐Zoccai G. Pushing wrist access to the limit: homolateral right ulnar artery approach for primary percutaneous coronary intervention after right radial failure due to radial loop. Catheter Cardiovasc Interv. 2011;78:894–897.
    1. James D, Huang Y, Kwan TW. Percutaneous coronary intervention via transulnar sheathless approach. J Invasive Cardiol. 2012;24:E157–E158.
    1. Kwan TW, Ratcliffe JA, Chaudhry M, Huang Y, Wong S, Zhou X, Pancholy S, Patel T. Transulnar catheterization in patients with ipsilateral radial artery occlusion. Catheter Cardiovasc Interv. 2013;82:E849–E855.
    1. Agostoni P, Zuffi A, Faurie B, Tosi P, Samim M, Belkacemi A, Voskuil M, Stella PR, Romagnoli E, Biondi‐Zoccai G. Same wrist intervention via the cubital (ulnar) artery in case of radial puncture failure for percutaneous cardiac catheterization or intervention: the multicenter SWITCH registry. Int J Cardiol. 2013;169:52–56.
    1. Hahalis G, Tsigkas G, Xanthopoulou I, Deftereos S, Ziakas A, Raisakis K, Pappas C, Sourgounis A, Grapsas N, Davlouros P, Galati A, Plakomyti TE, Mylona P, Styliadis I, Pyrgakis V, Alexopoulos D. Transulnar compared with transradial artery approach as a default strategy for coronary procedures: a randomized trial. The Transulnar or Transradial Instead of Coronary Transfemoral Angiographies Study (the AURA of ARTEMIS Study). Circ Cardiovasc Interv. 2013;6:252–261.
    1. Kedev S, Zafirovska B, Dharma S, Petkoska D. Safety and feasibility of transulnar catheterization when ipsilateral radial access is not available. Catheter Cardiovasc Interv. 2014;83:E51–E60.
    1. Roghani‐Dehkordi F, Hadizadeh M, Hadizadeh F. Percutaneous trans‐ulnar artery approach for coronary angiography and angioplasty; a case series study. ARYA Atheroscler. 2015;11:305–309.
    1. Pancholy SB, Bernat I, Bertrand OF, Patel TM. Prevention of radial artery occlusion after transradial catheterization: The PROPHET‐II Randomized Trial. JACC Cardiovasc Interv. 2016;9:1992–1999.

Source: PubMed

3
Sottoscrivi