Diagnostic Criteria of Postoperative Cognitive Dysfunction: A Focused Systematic Review

Kim van Sinderen, Lothar A Schwarte, Patrick Schober, Kim van Sinderen, Lothar A Schwarte, Patrick Schober

Abstract

Postoperative Cognitive Dysfunction (POCD) is characterized by a deterioration in cognitive performance after surgery and is increasingly addressed in research studies. However, a uniform definition of POCD seems to be lacking, which is a major threat to clinical research in this area. We performed a focused systematic review to determine the current degree of heterogeneity in how POCD is defined across studies and to identify those diagnostic criteria that are used most commonly. The search identified 173 records, of which 30 were included. Neurocognitive testing was most commonly performed shortly before surgery and at 7 days postoperatively. A variety of neurocognitive tests were used to test a range of cognitive domains, including complex attention, language, executive functioning, perceptual-motor function, and learning and memory. The tests that were used most commonly were the Mini-Mental State Examination, the digit span test, the trail making test part A, and the digit symbol substitution test, but consensus on which test result would be considered "positive" for POCD was sparse. The results of this systematic review suggest the lack of a consistent approach towards defining POCD. However, commonalities were identified which may serve as a common denominator for deriving consensus-based diagnostic guidelines for POCD.

Conflict of interest statement

Kim van Sinderen, Lothar A. Schwarte, and Patrick Schober report no conflicts of interest regarding the publication of this paper.

Copyright © 2020 Kim van Sinderen et al.

Figures

Figure 1
Figure 1
Flow diagram of studies included in the systematic review.

References

    1. Sauër A.-M., Kalkman C., van Dijk D. Postoperative cognitive decline. Journal of Anesthesia. 2009;23(2):256–259. doi: 10.1007/s00540-009-0744-5.
    1. Evered L., Silbert B., Scott D. A., Ames D., Maruff P., Blennow K. Cerebrospinal fluid biomarker for alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology. 2016;124(2):353–361. doi: 10.1097/aln.0000000000000953.
    1. Evered L. A., Silbert B. S. Postoperative cognitive dysfunction and noncardiac surgery. Anesthesia & Analgesia. 2018;127(2):496–505. doi: 10.1213/ane.0000000000003514.
    1. Needham M. J., Webb C. E., Bryden D. C. Postoperative cognitive dysfunction and dementia: what we need to know and do. British Journal of Anaesthesia. 2017;119(suppl_1):i115–i125. doi: 10.1093/bja/aex354.
    1. Rudolph J. L., Schreiber K. A., Culley D. J., et al. Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiologica Scandinavica. 2010;54(6):663–677. doi: 10.1111/j.1399-6576.2010.02236.x.
    1. Evered L., Silbert B., Knopman D. S., et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Anesthesia & Analgesia. 2018;127(5):1189–1195. doi: 10.1213/ane.0000000000003634.
    1. Claes A. J., de Backer S., Van de Heyning P., Gilles A., Van Rompaey V., Mertens G. Postoperative cognitive dysfunction after cochlear implantation. European Archives of Oto-Rhino-Laryngology. 2018;275(6):1419–1427. doi: 10.1007/s00405-018-4976-6.
    1. Duan X., Zhu T., Chen C., et al. Serum glial cell line-derived neurotrophic factor levels and postoperative cognitive dysfunction after surgery for rheumatic heart disease. The Journal of Thoracic and Cardiovascular Surgery. 2018;155(3):958–965. doi: 10.1016/j.jtcvs.2017.07.073.
    1. Gong G.-L., Liu B., Wu J.-X., Li J.-Y., Shu B.-Q., You Z.-J. Postoperative cognitive dysfunction induced by different surgical methods and its risk factors. The American Surgeon. 2018;84(9):1531–1537. doi: 10.1177/000313481808400963.
    1. Hayashi K., Oshima H., Shimizu M., et al. Preoperative 6-minute walk distance is associated with postoperative cognitive dysfunction. The Annals of Thoracic Surgery. 2018;106(2):505–512. doi: 10.1016/j.athoracsur.2018.03.010.
    1. Hou R., Wang H., Chen L., Qiu Y., Li S. POCD in patients receiving total knee replacement under deep vs light anesthesia: a randomized controlled trial. Brain and Behavior. 2018;8(2) doi: 10.1002/brb3.910.e00910
    1. Konishi Y., Evered L. A., Scott D. A., Silbert B. S. Postoperative cognitive dysfunction after sevoflurane or propofol general anaesthesia in combination with spinal anaesthesia for hip arthroplasty. Anaesthesia and Intensive Care. 2018;46(6):596–600. doi: 10.1177/0310057x1804600610.
    1. Kumpaitiene B., Svagzdiene M., Drigotiene I., et al. Correlation among decreased regional cerebral oxygen saturation, blood levels of brain injury biomarkers, and cognitive disorder. Journal of International Medical Research. 2018;46(9):3621–3629. doi: 10.1177/0300060518776545.
    1. Sahan C., Sungur Z., Camci E, et al. Effects of cerebral oxygen changes during coronary bypass surgery on postoperative cognitive dysfunction in elderly patients: a pilot study. Brazilian Journal of Anesthesiology. 2018;68(2):142–148. doi: 10.1016/j.bjane.2017.10.006.
    1. Zhang N., Liang M., Zhang D.-d., et al. Effect of goal-directed fluid therapy on early cognitive function in elderly patients with spinal stenosis: a case-control study. International Journal of Surgery. 2018;54(Pt A):201–205. doi: 10.1016/j.ijsu.2018.04.007.
    1. Zhang Y., Shan G.-J., Zhang Y.-X., et al. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. British Journal of Anaesthesia. 2018;121(3):595–604. doi: 10.1016/j.bja.2018.05.059.
    1. Zhang Y., Shan G.-J., Zhang Y.-X., et al. Preoperative vitamin D deficiency increases the risk of postoperative cognitive dysfunction: a predefined exploratory sub-analysis. Acta Anaesthesiologica Scandinavica. 2018;62(7):924–935. doi: 10.1111/aas.13116.
    1. Cheng X. Q., Mei B., Zuo Y. M., et al. A multicentre randomised controlled trial of the effect of intra-operative dexmedetomidine on cognitive decline after surgery. Anaesthesia. 2019;74(6):741–750. doi: 10.1111/anae.14606.
    1. Daiello L. A., Racine A. M., Yun Gou R., et al. Postoperative delirium and postoperative cognitive dysfunction. Anesthesiology. 2019;131(3):477–491. doi: 10.1097/aln.0000000000002729.
    1. Gao B., Zhu B., Wu C. Preoperative serum 25-hydroxyvitamin D level, a risk factor for postoperative cognitive dysfunction in elderly subjects undergoing total joint arthroplasty. The American Journal of the Medical Sciences. 2019;357(1):37–42. doi: 10.1016/j.amjms.2018.10.012.
    1. Han Y., Han L., Dong M.-M., et al. Preoperative salivary cortisol AM/PM ratio predicts early postoperative cognitive dysfunction after noncardiac surgery in elderly patients. Anesthesia & Analgesia. 2019;128(2):349–357. doi: 10.1213/ane.0000000000003740.
    1. Holmgaard F., Vedel A. G., Rasmussen L. S., Paulson O. B., Nilsson J. C., Ravn H. B. The association between postoperative cognitive dysfunction and cerebral oximetry during cardiac surgery: a secondary analysis of a randomised trial. British Journal of Anaesthesia. 2019;123(2):196–205. doi: 10.1016/j.bja.2019.03.045.
    1. Hongyu X., Qingting W., Xiaoling S., Liwu Z., Ailing Y., Xin L. Penehyclidine hydrochloride on postoperatively cognitive function. Medical Hypotheses. 2019;129 doi: 10.1016/j.mehy.2019.109246.109246
    1. Kristek G., Radoš I., Kristek D., et al. Influence of postoperative analgesia on systemic inflammatory response and postoperative cognitive dysfunction after femoral fractures surgery: a randomized controlled trial. Regional Anesthesia & Pain Medicine. 2019;44(1):59–68. doi: 10.1136/rapm-2018-000023.
    1. Lachmann G., Kant I., Lammers F., et al. Cerebral microbleeds are not associated with postoperative delirium and postoperative cognitive dysfunction in older individuals. PLoS One. 2019;14(6) doi: 10.1371/journal.pone.0218411.e0218411
    1. Langer T., Santini A., Zadek F., et al. Intraoperative hypotension is not associated with postoperative cognitive dysfunction in elderly patients undergoing general anesthesia for surgery: results of a randomized controlled pilot trial. Journal of Clinical Anesthesia. 2019;52:111–118. doi: 10.1016/j.jclinane.2018.09.021.
    1. Li Q. H., Yu L., Yu Z. W, et al. Relation of postoperative serum S100A12 levels to delirium and cognitive dysfunction occurring after hip fracture surgery in elderly patients. Brain and Behavior. 2019;9(1) doi: 10.1002/brb3.1176.e01176
    1. Li W.-X., Luo R.-Y., Chen C., et al. Effects of propofol, dexmedetomidine, and midazolam on postoperative cognitive dysfunction in elderly patients. Chinese Medical Journal. 2019;132(4):437–445. doi: 10.1097/cm9.0000000000000098.
    1. Quan C., Chen J., Luo Y, et al. BIS-guided deep anesthesia decreases short-term postoperative cognitive dysfunction and peripheral inflammation in elderly patients undergoing abdominal surgery. Brain and Behavior. 2019;9(4) doi: 10.1002/brb3.1238.e01238
    1. Sanchez A., Thomas C., Deeken F., et al. Patient safety, cost-effectiveness, and quality of life: reduction of delirium risk and postoperative cognitive dysfunction after elective procedures in older adults-study protocol for a stepped-wedge cluster randomized trial (PAWEL Study) Trials. 2019;20(1):p. 71. doi: 10.1186/s13063-018-3148-8.
    1. Wang L. W., Zhu M. J., Li Y, et al. FKBP51 is associated with early postoperative cognitive dysfunction in elderly patients undergoing hip fracture surgery. Medicine. 2019;98(5) doi: 10.1097/md.0000000000014037.e14037
    1. Wang M., Su P., Liu Y, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with postoperative cognitive dysfunction after coronary artery bypass grafting. Molecular Medicine Reports. 2019;20(3):2549–2562. doi: 10.3892/mmr.2019.10521.
    1. Wang R., Wang G., Liu Y., Zhang M. Preoperative smoking history is associated with decreased risk of early postoperative cognitive dysfunction in patients of advanced age after noncardiac surgery: a prospective observational cohort study. Journal of International Medical Research. 2019;47(2):689–701. doi: 10.1177/0300060518808162.
    1. Wang Y., Cheng J., Yang L., Wang J., Liu H., Lv Z. Ropivacaine for intercostal nerve block improves early postoperative cognitive dysfunction in patients following thoracotomy for esophageal cancer. Medical Science Monitor. 2019;25:460–465. doi: 10.12659/msm.912328.
    1. Zhang J., Chen L., Sun Y., He W. Comparative effects of fentanyl versus sufentanil on cerebral oxygen saturation and postoperative cognitive function in elderly patients undergoing open surgery. Aging Clinical and Experimental Research. 2019;31(12):1791–1800. doi: 10.1007/s40520-019-01123-8.
    1. Zhang Y., Bao H.-G., Lv Y.-L, et al. Risk factors for early postoperative cognitive dysfunction after colorectal surgery. BMC Anesthesiology. 2019;19(1):p. 6. doi: 10.1186/s12871-018-0676-4.
    1. Sachdev P. S., Blacker D., Blazer D. G., et al. Classifying neurocognitive disorders: the DSM-5 approach. Nature Reviews Neurology. 2014;10(11):634–642. doi: 10.1038/nrneurol.2014.181.
    1. Rasmussen L. S., Larsen K., Houx P., et al. The assessment of postoperative cognitive function. Acta Anaesthesiologica Scandinavica. 2001;45(3):275–289. doi: 10.1034/j.1399-6576.2001.045003275.x.
    1. Jacobson N. S., Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology. 1991;59(1):12–19. doi: 10.1037/0022-006x.59.1.12.
    1. Newman M. F., Mathew J. P., Grocott H. P., et al. Central nervous system injury associated with cardiac surgery. The Lancet. 2006;368(9536):694–703. doi: 10.1016/s0140-6736(06)69254-4.
    1. Kotekar N., Shenkar A., Nagaraj R. Postoperative cognitive dysfunction–current preventive strategies. Clinical Interventions in Aging. 2018;13:2267–2273. doi: 10.2147/cia.s133896.
    1. Çizmeci E. A., Slooter A. J. C. Defining perioperative neurocognitive disorders: still more to clarify. British Journal of Anaesthesia. 2019;123(3):p. e468. doi: 10.1016/j.bja.2019.05.037.
    1. Evered L., Silbert B., Knopman D. S., et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. British Journal of Anaesthesia. 2018;121(5):1005–1012. doi: 10.1016/j.bja.2017.11.087.
    1. Siqueira G. S. A., Hagemann P. d. M. S., Coelho D. d. S., Santos F. H. D., Bertolucci P. H. F. Can MoCA and MMSE be interchangeable cognitive screening tools? A systematic review. The Gerontologist. 2019;59(6):e743–e763. doi: 10.1093/geront/gny126.
    1. Vetter T. R., Schober P., Mascha E. J. Diagnostic testing and decision-making. Anesthesia & Analgesia. 2018;127(4):1085–1091. doi: 10.1213/ane.0000000000003698.

Source: PubMed

3
Sottoscrivi