The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review

Sophie Lefmann, Remo Russo, Susan Hillier, Sophie Lefmann, Remo Russo, Susan Hillier

Abstract

Background: Robotic-assisted gait training (RAGT) affords an opportunity to increase walking practice with mechanical assistance from robotic devices, rather than therapists, where the child may not be able to generate a sufficient or correct motion with enough repetitions to promote improvement. However the devices are expensive and clinicians and families need to understand if the approach is worthwhile for their children, and how it may be best delivered.

Methods: The objective of this review was to identify and appraise the existing evidence for the effectiveness of RAGT for paediatric gait disorders, including modes of delivery and potential benefit. Six databases were searched from 1980 to October 2016, using relevant search terms. Any clinical trial that evaluated a clinical aspect of RAGT for children/adolescents with altered gait was selected for inclusion. Data were extracted following the PRISMA approach. Seventeen trials were identified, assessed for level of evidence and risk of bias, and appropriate data extracted for reporting.

Results: Three randomized controlled trials were identified, with the remainder of lower level design. Most individual trials reported some positive benefits for RAGT with children with cerebral palsy (CP), on activity parameters such as standing ability, walking speed and distance. However a meta-analysis of the two eligible RCTs did not confirm this finding (p = 0.72). Training schedules were highly variable in duration and frequency and adverse events were either not reported or were minimal. There was a paucity of evidence for diagnoses other than CP.

Conclusion: There is weak and inconsistent evidence regarding the use of RAGT for children with gait disorders. If clinicians (and their clients) choose to use RAGT, they should monitor individual progress closely with appropriate outcome measures including monitoring of adverse events. Further research is required using higher level trial design, increased numbers, in specific populations and with relevant outcome measures to both confirm effectiveness and clarify training schedules.

Keywords: Gait; Paediatric; Rehabilitation; Robot-assisted training.

Figures

Fig. 1
Fig. 1
PRISMA flow chart of included studies
Fig. 2
Fig. 2
Forest plot of RAGT versus usual physiotherapy on walking speed

References

    1. Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J Rehabil Med. 2010;42:520–526. doi: 10.2340/16501977-0538.
    1. Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: A systematic review. J Rehabil Med. 2010;42:513–519. doi: 10.2340/16501977-0525.
    1. Zwicker JG, Mayson TA. Effectiveness of treadmill training in children with motor impairments: an overview of systematic reviews. Pediatr Phys Ther. 2010;22:361–377. doi: 10.1097/PEP.0b013e3181f92e54.
    1. Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:137–149. doi: 10.1097/PHM.0b013e318201741e.
    1. Patritti B, Sicari M, Deming L, Romaguera F, Pelliccio MM, Kasi P, et al. The role of augmented feedback in pediatric robotic-assisted gait training: A case series. Technol Disabil. 2010;22:215–227.
    1. Swinnen E, Beckwee D, Meeusen R, Baeyens JP, Kerckhofs E. Does Robot-Assisted Gait Rehabilitation Improve Balance in Stroke Patients? A Systematic Review. Top Stroke Rehabil. 2014;21:87–100. doi: 10.1310/tsr2102-87.
    1. Aurich-Sculer T, Warken B, Graser JV, Ulrich T, Borggraefe I, Heinen F, et al. Practical Recommendations for Robot-Assisted Treadmill Therapy (Lokomat) in Children with Cerebral Palsy: Indications, Goal Setting, and Clinical Implementation within the WHO-ICF Framework. Neuropediatrics. 2015;46:248–260. doi: 10.1055/s-0035-1550150.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, [The PRISMA Group] Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. National Health and Medical Research Council [NHMRC] How to use the evidence: assessment and application of scientific evidence. Canberra: NHMRC, Commonwealth of Australia Australian Government Publisher; 2000.
    1. Higgins JPT, Green S (eds.) 2009. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2 [updated September 2009]: The Cochrane Collaboration. . Accessed 24 Aug 2016.
    1. Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, et al. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur J Paediatr Neurol. 2014;18:502–510. doi: 10.1016/j.ejpn.2014.04.012.
    1. Borggraefe I, Klaiber M, Schuler T, Warken B, Schroeder SA, Heinen F, et al. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: A bi-centre survey. Dev Neurorehabil. 2010;13:114–119. doi: 10.3109/17518420903321767.
    1. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49:900–906. doi: 10.1111/j.1469-8749.2007.00900.x.
    1. Brutsch K, Koenig A, Zimmerli L, Merrillat-Koeneke S, Riener R, Jancke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J Rehabil Med. 2011;43:493–499. doi: 10.2340/16501977-0802.
    1. Druzbicki M, Rusek W, Szczepanik M, Dudek J, Snela S. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng Biomech. 2010;12:53–58.
    1. Koenig A, Wellner M, Köneke S, Meyer-Heim A, Lünenburger L, Riener R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008;132:204–209.
    1. Bayón C, Ramirez O, Velasco M, Serrano J, Lerma S, Martinez-Caballero I, Rocon E. Pilot study of a novel robotic platform for gait rehabilitation in children with cerebral palsy. ^th IEEE RAS/EMBS INternatinoal Conference on Biomedical Robotics and Biomechatronics. Singapore: UTown; 2016. pp. 882–887.
    1. Druzbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, et al. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 2013;45:358–363. doi: 10.2340/16501977-1114.
    1. Schroeder AS, von Kries R, Riedel C, Homburg M, Auffermann H, Blaschek A, et al. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014;56:1172–1179. doi: 10.1111/dmcn.12564.
    1. Nikityuk IE, Moshonkina TR, Shcherbakova NA, Vissarionov SV, Umnov VV, Rozhdestvenskii VY, Gerasimenko YP. Effect of locomotor training and functional electrical stimulation on postural function in children with severe cerebral palsy. Hum Physiol. 2016;42:262–270. doi: 10.1134/S0362119716030129.
    1. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a six year old child with cerebral palsy. Mov Disord. 2008;23:280–282. doi: 10.1002/mds.21802.
    1. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer-Heim A, et al. Sustainabilioty of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46:125–131.
    1. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schäfer J, Sennhauser FH, Heinen F, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94:615–620. doi: 10.1136/adc.2008.145458.
    1. van Hedel HJA, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy: Brief report. Dev Neurorehabil. 2015;19:1–6. doi: 10.3109/17518423.2015.1017661.
    1. Borggraefe I, Schaefer JS, Klaiber M, Knecht B, Dabrowski E, Ammann-Reiffer C, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14:496–502. doi: 10.1016/j.ejpn.2010.01.002.
    1. Inguaggiato E, Sgandurra G, Perazza S, Guzzetta A, Cioni G. Brain Reorganization following Intervention in Children with Congenital Hemiplegia: A Systematic Review. Neural Plast. 2013;2013:356275. doi:10.1155/2013/356275.
    1. Rogers A, Furler B, Brinks S, Darrah J. A systematic review of the effectiveness of aerobic exercise interventions for children with cerebral palsy: an AACPDM evidence report. Dev Med Child Neurol. 2008;50:808–814. doi: 10.1111/j.1469-8749.2008.03134.x.
    1. Butler JM, Scianni A, Ada L. Effect of cardiorespiratory training on aerobic fitness and carryover to activity in children with cerebral palsy: a systematic review. Int J Rehabil Res. 2010;33:97–103. doi: 10.1097/MRR.0b013e328331c555.
    1. Verschuren O, Ketelaar M, Takken T, Helders PJ, Gorter JW, et al. Exercise programs for children with cerebral palsy: a systematic review of the literature. Am J Phys Med Rehabil. 2008;87:404–417. doi: 10.1097/PHM.0b013e31815b2675.

Source: PubMed

3
Sottoscrivi