The Enhanced Interactive Physical and Cognitive Exercise System (iPACESTM v2.0): Pilot Clinical Trial of an In-Home iPad-Based Neuro-Exergame for Mild Cognitive Impairment (MCI)

Kathryn Wall, Jessica Stark, Alexa Schillaci, Emilie T Saulnier, Elizabeth McLaren, Kristina Striegnitz, Brian D Cohen, Paul J Arciero, Arthur F Kramer, Cay Anderson-Hanley, Kathryn Wall, Jessica Stark, Alexa Schillaci, Emilie T Saulnier, Elizabeth McLaren, Kristina Striegnitz, Brian D Cohen, Paul J Arciero, Arthur F Kramer, Cay Anderson-Hanley

Abstract

Given increasing longevity worldwide, older adults and caregivers are seeking ways to curb cognitive decline especially for those with mild cognitive impairment (MCI, now mild neurocognitive disorder, mNCD, Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V). This quasi-experimental, within-subjects pilot clinical trial was designed to replicate and extend the study of cognitive benefits for MCI by improving upon our prior interactive Physical and Cognitive Exercise Study (iPACESTM v1.0) by increasing the usability of the neuro-exergame and exploring possible underlying neurobiological mechanisms. Older adults were enrolled in a three-month, in-home trial of a portable neuro-exergame (iPACES™ v2.0) where participants pedaled and steered along a virtual bike path (Memory Lane™). Neuropsychological function was assessed at baseline after component familiarization intervals (e.g., two weeks of exercise-only, game-only, etc.) and after three months of interactive neuro-exergame intervention. Fourteen participants were enrolled in the study and seven completed the final evaluation. Intent-to-treat analyses were conducted with imputed missing data (total n = 14). Significant improvement in executive function (Stroop) was found (d = 0.68, p = 0.02) only. Changes in salivary biomarkers (cortisol and insulin-like growth factor 1; IGF-1) were significantly associated with improved cognition. Further research is needed, but pilot data suggest that a portable in-home neuro-exergame may be an additional, practical tool to fight back against cognitive decline and dementia.

Keywords: Alzheimer’s; IGF-1; cortisol; dementia; executive function; exercise; exergame; mild cognitive impairment; neurocognitive disorder; older adult.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pilot study design showing component familiarization periods leading to interactive Physical and Cognitive Exercise System (iPACES) intervention.
Figure 2
Figure 2
Illustration of the use of interactive pedaling and steering of the iPACES™ v2.0 neuro-exergame, Memory Lane.
Figure 3
Figure 3
CONSORT Flow Diagram: enrollment and progress of participants through the trial.
Figure 4
Figure 4
Changes in cognition over three-month iPACES neuro-exergame intervention exceed practice effects.

References

    1. Kirova A.M., Bays R.B., Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biol. Med. Res. Int. 2015;2015 doi: 10.1155/2015/748212.
    1. Prince M., Wimo A., Guerchet M., Ali G., Wu Y., Prina M. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer’s Disease International; London, UK: 2015.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. Volume 4. American Psychiatric Publishing; Arlington, VA, USA: 2010.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. Volume 5. American Psychiatric Publishing; Arlington, VA, USA: 2013.
    1. Plassman B.L., Langa K.M., Fisher G.G., Heeringa S.G., Weir D.R., Ofstedal M.B., Steffens D.C. Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology. 2007;29:125–132. doi: 10.1159/000109998.
    1. Alzheimer’s Association. [(accessed on 26 July 2018)]; Available online: .
    1. Alzheimer’s Disease International: World Alzheimer Report 2009. [(accessed on 27 August 2018)]; Available online: .
    1. Fichman H.C., Oliveira R.M., Fernandes C.S. Neuropsychological and neurobiological markers of the preclinical stage of alzheimer’s disease. Psychol. Neurosci. 2011;4:245–253. doi: 10.3922/j.psns.2011.2.010.
    1. Kramer A.F., Colcombe S. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study—Revisited. Perspect. Psychol. Sci. 2018;13:213–217. doi: 10.1177/1745691617707316.
    1. Chodzko-Zajko W.J., Proctor D.N., Singh M.A., Minson C.T., Nigg C.R., Salem G.J., Skinner J.S. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009;41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c.
    1. Anderson-Hanley C., Stark J., Wall K.M., Van Brakle M., Michel M., Maloney M., Barcelos N., Striegnitz K., Cohen B.D., Kramer A.F. The interactive Physical and Cognitive Exercise System (iPACES™): Effects of a 3-month in-home pilot clinical trial for mild cognitive impairment and caregivers. Clin. Int. Aging. 2018 in press.
    1. Colcombe S., Kramer A. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003;14:125–130. doi: 10.1111/1467-9280.t01-1-01430.
    1. Rathore A., Lom B. The effects of chronic and acute physical activity on working memory performance in healthy participants: A systematic review with meta-analysis of randomized controlled trials. Syst. Rev. 2017;6:1–16. doi: 10.1186/s13643-017-0514-7.
    1. Cui M.Y., Lin Y., Sheng J.Y., Zhang X., Cui R.J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018;2018 doi: 10.1155/2018/9234105.
    1. Mistridis P., Krumm S., Monsch A.U., Berres M., Taylor K.I. The 12 years preceding mild cognitive impairment due to Alzheimer’s disease: The temporal emergence of cognitive decline. J. Alzheimer’s Dis. 2015;48:1095–1107. doi: 10.3233/JAD-150137.
    1. Zheng G., Xia R., Zhou W., Tao J., Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016;50:1443–1450. doi: 10.1136/bjsports-2015-095699.
    1. Song D., Yu D.S.F., Li P.W.C., Lei Y. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2018;79:155–164. doi: 10.1016/j.ijnurstu.2018.01.002.
    1. Hess N.C.L., Dieberg G., Mcfarlane J.R., Smart N.A. The effect of exercise intervention on cognitive performance in persons at risk of, or with, dementia: A systematic review and meta-analysis. Health Aging Res. 2014;3:1–10. doi: 10.12715/har.2014.3.3.
    1. Ludyga S., Gerber M., Brand S., Holsboer-Trachsler E., Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology. 2016;53:1611–1626. doi: 10.1111/psyp.12736.
    1. Yoon J.H., Minzenberg M.J., Ursu S., Walter R., Wendelken C., Ragland J.D., Carter C.S. Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: Relationship with impaired cognition, behavioral disorganization, and global function. Am. J. Psychiatry. 2008;165:1006–1014. doi: 10.1176/appi.ajp.2008.07060945.
    1. Liang J.-H., Xu Y., Lin L., Jia R.-X., Zhang H.-B., Hang L. Comparison of multiple interventions for older adults with Alzheimer disease or mild cognitive impairment: A PRISMA-compliant network meta-analysis. Medicine (Baltimore) 2018;97:e10744. doi: 10.1097/MD.0000000000010744.
    1. Anderson-Hanley C., Arciero P.J., Brickman A.M., Nimon J.P., Okuma N., Westen S.C., Merz M.E., Pence B.D., Woods J.A., Kramer A.F., et al. Exergaming and older adult cognition: A cluster randomized clinical trial. Am. J. Prev. Med. 2012;42:109–119. doi: 10.1016/j.amepre.2011.10.016.
    1. Pope Z., Zeng N., Zhang R., Lee H.Y., Gao Z. Effectiveness of Combined Smartwatch and Social Media Intervention on Breast Cancer Survivor Outcomes: Randomized Trial. Med. Sci. Sports Exer. 2018;50:137. doi: 10.1249/01.mss.0000535536.13395.a2.
    1. Van Praag H., Kempermann G., Gage F.H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 2000;1:191–198. doi: 10.1038/35044558.
    1. Van Praag H., Shubert T., Zhao C., Gage F. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 2005;25:8680–8685. doi: 10.1523/JNEUROSCI.1731-05.2005.
    1. Van Praag H. Neurogenesis and exercise: past and future directions. Neuromol. Med. 2008;10:128–140. doi: 10.1007/s12017-008-8028-z.
    1. Suo C., Singh M.F., Gates N., Wen W., Sachdev P., Brodaty H., Baune B.T. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol. Psychiatry. 2016;21:1633–1642. doi: 10.1038/mp.2016.19.
    1. Pappa K., Walsh S., Snyder P. Immediate and delayed effects of cognitive interventions in healthy elderly: A review of current literature and future directions. Alzheimer’s Dement. 2009;5:50–60. doi: 10.1016/j.jalz.2008.10.008.
    1. Anguera J.A., Boccanfuso J., Rintoul J.L., Al-Hashimi O., Faraji F., Janowich J., Kong E., Larraburo Y., Rolle C., Johnston E., et al. Video game training enhances cognitive control in older adults. Nature. 2013;501:97–101. doi: 10.1038/nature12486.
    1. Li K.Z.H., Lindenberger U., Freund A.M., Baltes P.B. WALKING WHILE MEMORIZING: Age-Related Differences in Compensatory Behavior. Psychol. Sci. 2001;12:230–238. doi: 10.1111/1467-9280.00341.
    1. Toril P., Reales J.M., Ballesteros S. Video game training enhances cognition of older adults: A meta-analytic study. Psychol. Aging. 2014;29:706. doi: 10.1037/a0037507.
    1. Wang C., Yu J., Wang H., Tan C., Meng X., Tan L. Non-pharmacological interventions for patients with mild cognitive impairment: A meta-analysis of randomized controlled trials of cognition-based and exercise interventions. J. Alzheimer’s Dis. 2014;42:663–678. doi: 10.3233/JAD-140660.
    1. Ballesteros S., Prieto A., Mayas J., Toril P., Pita C., Ponce de León L., Reales J.M., Waterworth J. Brain training with non-action video games enhances aspects of cognition in older adults: A randomized controlled trial. Front. Aging Neurosci. 2014;6:277. doi: 10.3389/fnagi.2014.00277.
    1. Corbett A., Owen A., Hampshire A., Grahn J., Stenton R., Dajani S., Burns A., Howard R., Williams N., Williams G., et al. The Effect of an Online Cognitive Training Package in Healthy Older Adults: An Online Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2015;16:990–997. doi: 10.1016/j.jamda.2015.06.014.
    1. Mowszowski L., Lampit A., Walton C., Naismith S. Strategy-Based Cognitive Training for Improving Executive Functions in Older Adults: A Systematic Review. Neuropsychol. Rev. 2016;26:252–270. doi: 10.1007/s11065-016-9329-x.
    1. Bahar-Fuchs A., Clare L., Woods B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimer’s Res. Ther. 2013;5:35. doi: 10.1186/alzrt189.
    1. Karr J.E., Areshenkoff C.N., Rast P., Garcia-Barrera M.A. An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: A meta-analysis of controlled trials. Neuropsychology. 2014;28:829. doi: 10.1037/neu0000101.
    1. Martin M., Clare L., Altgassen A.M., Cameron M.H., Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Libr. 2011 doi: 10.1002/14651858.CD006220.pub2.
    1. Simons D.J., Boot W.R., Charness N., Gathercole S.E., Chabris C.F., Hambrick D.Z., Stine-Morrow E.A. Do “Brain Training” Programs Work? Psychol. Sci. Public Interest Suppl. 2016;17:103–186. doi: 10.1177/1529100616661983.
    1. Reijnders J., van Heugten C., van Boxtel M. Cognitive interventions in healthy older adults and people with mild cognitive impairment: A systematic review. Ageing Res. Rew. 2013;12:263–275. doi: 10.1016/j.arr.2012.07.003.
    1. Zokaei N., MacKellar C., Čepukaitytė G., Patai E.Z., Nobre A.C. Cognitive training in the elderly: Bottlenecks and new avenues. J. Cogn. Neurosci. 2017;29:1473–1482. doi: 10.1162/jocn_a_01080.
    1. AAN Summary of Practice Guidelines for Clinicians, Practice Guideline Update: Mild Cognitive Impairment. [(accessed on 1 July 2018)]; Available online: .
    1. Eshkoor S.A., Hamid T.A., Mun C.Y., Ng C.K. Mild cognitive impairment and its management in older people. Clin. Int. Aging. 2015;10:687–693. doi: 10.2147/CIA.S73922.
    1. Nagamatsu L.S., Flicker L., Kramer A.F., Voss M.W., Erickson K.I., Hsu C.L., Liu-Ambrose T. Exercise is medicine, for the body and the brain. Br. J. Sports Med. 2014:943–944. doi: 10.1136/bjsports-2013-093224.
    1. Studenski S., Carlson M.C., Fillit H., Greenough W.T., Kramer A., Rebok G.W. From bedside to bench: does mental and physical activity promote cognitive vitality in late life? Sci. SAGE KE. 2006;2006:pe21. doi: 10.1126/sageke.2006.10.pe21.
    1. Foster P.P., Rosenblatt K.P., Kuljiš R.O. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease. Front. Neurol. 2011;2:28. doi: 10.3389/fneur.2011.00028.
    1. Gheysen F., Poppe L., DeSmet A., Swinnen S., Cardon G., De Bourdeaudhuij I., Chastin S., Fias W. Physical activity to improve cognition in older adults: Can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018;15:63. doi: 10.1186/s12966-018-0697-x.
    1. Constans A., Pin-barre C., Temprado J.J., Decherchi P., Laurin J. Influence of aerobic training and combinations of interventions on cognition and neuroplasticity after stroke. Front. Aging Neurosci. 2016;8:164. doi: 10.3389/fnagi.2016.00164.
    1. Diamond A. Effects of Physical Exercise on Executive Functions: Going beyond Simply Moving to Moving with Thought. Ann. Sport Med. Res. 2015;2:1011.
    1. Zhu X., Yin S., Lang M., He R., Li J. The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Res. Rev. 2016;31:67–79. doi: 10.1016/j.arr.2016.07.003.
    1. Geda Y.E., Silber T.C., Roberts R.O., Knopman D.S., Christianson T.J., Pankratz V.S., Boeve B.F., Tangalos E.G., Petersen R.C. Computer activities, physical exercise, aging, and mild cognitive impairment: A population-based study. Mayo Clin. Proc. 2012;87:437–442. doi: 10.1016/j.mayocp.2011.12.020.
    1. Shah T., Verdile G., Sohrabi H., Campbell A., Putland E., Cheetham C., Dhaliwal S., Weinborn M., Maruff P., Darby D., et al. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl. Psychiatry. 2014;4:e487. doi: 10.1038/tp.2014.122.
    1. Karssemeijer E.E., Aaronson J.J., Bossers W.W., Smits T.T., Rikkert M.M., Kessels R.R. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res. Rev. 2017 doi: 10.1016/j.arr.2017.09.003.
    1. Styliadis C., Kartsidis P., Paraskevopoulos E., Ioannides A.A., Bamidis P.D. Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: An eLORETA controlled study on resting states. Neural Plast. 2015;2015 doi: 10.1155/2015/172192.
    1. Edwards M.K., Loprinzi P.D. Experimental Effects of Acute Exercise and Meditation on Parameters of Cognitive Function. J. Clin. Med. 2018;7:125. doi: 10.3390/jcm7060125.
    1. Anderson-Hanley C., Barcelos N.M., Zimmerman E.A., Gillen R.W., Dunnam M., Cohen B.D., Yerokhin V., Miller K.E., Hayes D.J., Arciero P.J., et al. The Aerobic and Cognitive Exercise Study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): Neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Front. Aging Neurosci. 2018;10 doi: 10.3389/fnagi.2018.00076.
    1. Anderson-Hanley C., Maloney M., Barcelos N., Striegnitz K., Kramer A. Neuropsychological Benefits of Neuro-Exergaming for Older Adults: A Pilot Study of an Interactive Physical and Cognitive Exercise System (iPACES) J. Aging Phys. Act. 2017;25:73–83. doi: 10.1123/japa.2015-0261.
    1. Bamidis P.D., Vivas A.B., Styliadis C., Frantzidis C., Klados M., Schlee W., Siountasa A., Papageorgioud S.G. A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 2014;44:206–220. doi: 10.1016/j.neubiorev.2014.03.019.
    1. Van Het Reve E., De Bruin E.D. Strength-balance supplemented with computerized cognitive training to improve dual task gait and divided attention in older adults: A multicenter randomized-controlled trial. BMC Geriatr. 2014;14:1–15. doi: 10.1186/1471-2318-14-134.
    1. Schaefer S., Schumacher V. The interplay between cognitive and motor functioning in healthy older adults: Findings from dual-task studies and suggestions for intervention. Gerontology. 2011;57:239–246. doi: 10.1159/000322197.
    1. Law L.L., Barnett F., Yau M.K., Gray M.A. Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review. Ageing Res. Rev. 2014;15:61–75. doi: 10.1016/j.arr.2014.02.008.
    1. Lauenroth A., Ioannidis A., Teichmann B. Influence of combined physical and cognitive training on cognition: A systematic review. BMC Geriatr. 2016;16:141. doi: 10.1186/s12877-016-0315-1.
    1. Noack H., Lövdén M., Schmiedek F. On the validity and generality of transfer effects in cognitive training research. Psychol. Res. 2014;78:773–789. doi: 10.1007/s00426-014-0564-6.
    1. Ratner E., Atkinson D. Why cognitive training and brain games will not prevent or forestall dementia. J. Am. Geriatr. Soc. 2015;63:2612–2614. doi: 10.1111/jgs.1_13825.
    1. Maffei L., Picano E., Andreassi M.G., Angelucci A., Baldacci F., Baroncelli L., Begenisic T., Bellinvia P.F., Berardi N., Biagi L., et al. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: The Train the Brain study. Sci. Rep. 2017;7:39471.
    1. Voss M.W., Weng T.B., Burzynska A.Z., Wong C.N., Cooke G.E., Clark R., Fanning J., Awick E., Gothe N.P., Olson E.A., et al. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage. 2016;131:113–125. doi: 10.1016/j.neuroimage.2015.10.044.
    1. Fabre C., Chamari K., Mucci P. Improvement of Cognitive Function by Mental and / or Individualized Aerobic Training in Healthy Elderly Subjects. Int. J. Sports Med. 2002;33:415–421. doi: 10.1055/s-2002-33735.
    1. Oswald W.D., Gunzelmann T., Rupprecht R., Hagen B. Differential effects of single versus combined cognitive and physical training with older adults: The SimA study in a 5-year perspective. Eur. J. Ageing. 2006;3:179–192. doi: 10.1007/s10433-006-0035-z.
    1. Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front. Aging Neurosci. 2013;5:8. doi: 10.3389/fnagi.2013.00008.
    1. Linde K., Alfermann D. Single versus combined cognitive and physical activity effects on fluid cognitive abilities of healthy older adults: A 4-month randomized controlled trial with follow-up. J. Aging Phys. Act. 2014;22:302–313. doi: 10.1123/JAPA.2012-0149.
    1. Rahe J., Petrelli A., Kaesberg S., Fink G.R., Kessler J., Kalbe E. Effects of cognitive training with additional physical activity compared to pure cognitive training in healthy older adults. Clin. Int. Aging. 2015;10:297. doi: 10.2147/CIA.S74071.
    1. Desjardins-Crépeau L., Berryman N., Fraser S.A., Vu T.T.M., Kergoat M.J., Li K.Z., Bosquet L., Bherer L. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin. Interv. Aging. 2016;11:1287–1299. doi: 10.2147/CIA.S115711.
    1. Rahe J., Becker J., Fink G.R., Kessler J., Kukolja J., Rahn A., Rosen J.B., Szabados F., Wirth B., Kalbe E. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Front. Aging Neurosci. 2015;7:187. doi: 10.3389/fnagi.2015.00187.
    1. Bruderer-Hofstetter M., Rausch-Osthoff A.K., Meichtry A., Münzer T., Niedermann K. Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition: A systematic review and network meta-analysis. Ageing Res. Rev. 2018;45:1–14. doi: 10.1016/j.arr.2018.04.002.
    1. Ballesteros S., Voelcker-Rehage C., Bherer L. Editorial: Cognitive and Brain Plasticity Induced by Physical Exercise, Cognitive Training, Video Games, and Combined Interventions. Front. Hum. Neurosci. 2018;12:169. doi: 10.3389/fnhum.2018.00169.
    1. Hiyamizu M., Morioka S., Shomoto K., Shimada T. Effects of dual task balancetraining on dual task performance in elderly people: A randomized controlled trial. Clin. Rehabil. 2012;26:58–67. doi: 10.1177/0269215510394222.
    1. Theill N., Schumacher V., Adelsberger R., Martin M., Jäncke L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013;14:103. doi: 10.1186/1471-2202-14-103.
    1. Kayama H., Okamoto K., Nishiguchi S., Yamada M., Kuroda T., Aoyama T. Effect of a Kinect-based exercise game on improving executive cognitive performance in community-dwelling elderly: Case control study. J. Med. Internet Res. 2014;16:e61. doi: 10.2196/jmir.3108.
    1. Barcelos N., Shah N., Cohen K., Hogan M.J., Mulkerrin E., Arciero P.J., Cohen B.D., Kramer A.F., Anderson-Hanley C. Aerobic and cognitive exercise (ACE) pilot study for older adults: Executive function improves with cognitive challenge while exergaming. J. Int. Neuropsychol. Soc. 2015;21:768–779. doi: 10.1017/S1355617715001083.
    1. Nishiguchi S., Yamada M., Tanigawa T., Sekiyama K., Kawagoe T., Suzuki M., Yoshikawa S., Abe N., Otsuka Y., Nakai R., et al. A 12-Week Physical and Cognitive Exercise Program Can Improve Cognitive Function and Neural Efficiency in Community-Dwelling Older Adults: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2015;63:1355–1363. doi: 10.1111/jgs.13481.
    1. Leon J., Urena A., Bolanos M.J., Bilbao A., Ona A. A combination of physical and cognitive exercise improves reaction time in persons 61–84 years old. J. Aging Phys. Activ. 2015;23:72–77. doi: 10.1123/JAPA.2012-0313.
    1. Yokoyama H., Okazaki K., Imai D., Yamashina Y., Takeda R., Naghavi N., Ota A., Hirasawa Y., Miyagawa T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial. BMC Geriatr. 2015;15:60. doi: 10.1186/s12877-015-0058-4.
    1. Mura G., Carta M.G., Sancassiani F., Machado S., Prosperini L. Active exergames to improve cognitive functioning in neurological disabilities: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2017 doi: 10.23736/S1973-9087.17.04680-9.
    1. Stanmore E.S., Brendon V.D., de Bruin E.D., Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2017;78:34–43. doi: 10.1016/j.neubiorev.2017.04.011.
    1. Kim J., Timmerman C.E. Effects of Supportive Feedback Messages on Exergame Experiences. Mass Commun. Soc. 2018;30:29–40. doi: 10.1027/1864-1105/a000175.
    1. Sonntag W.E., Ramsey M., Carter C.S. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 2005;4:195–212. doi: 10.1016/j.arr.2005.02.001.
    1. Dik M.G., Pluijm S.M.F., Jonker C., Deeg D.J.H., Lomecky M.Z., Lips P. Erratum: Insulin-like growth factor I (IGF-I) and cognitive decline in older persons Neurobiol. Aging. 2004;25:271. doi: 10.1016/S0197-4580(02)00136-7.
    1. Al-Delaimy W.K., Von Muhlen D., Barrett-Connor E. Insulinlike growth factor-1, insulinlike growth factor binding protein-1, and cognitive function in older men and women. J. Am. Geriatr. Soc. 2009;57:1441–1446. doi: 10.1111/j.1532-5415.2009.02343.x.
    1. Vega S.R., Knicker A., Hollmann W., Bloch W., Strüder H.K. Effect of resistance exercise on serum levels of growth factors in humans. Horm. Metab. Res. 2010;42:982–986. doi: 10.1055/s-0030-1267950.
    1. Bellar D., Glickman E.L., Juvancic-Heltzel J., Gunstad J. Serum insulin like growth factor-1 is associated with working memory, executive function and selective attention in a sample of healthy, fit older adults. Neuroscience. 2011;178:133–137. doi: 10.1016/j.neuroscience.2010.12.023.
    1. Voss M.W., Prakash R.S., Erickson K.I., Basak C., Chaddock L., Kim J.S., Alves H., Heo S., Szabo A.N., White S.M., et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010;2 doi: 10.3389/fnagi.2010.00032.
    1. Ray L., Khemka V.K., Behera P., Bandyopadhyay K., Pal S., Pal K., Basu D., Chakrabarti S. Serum homocysteine, dehydroepiandrosterone sulphate and lipoprotein (a) in Alzheimer’s disease and vascular dementia. Aging Dis. 2013;4:57.
    1. Maggio M., De Vita F., Fisichella A., Colizzi E., Provenzano S., Lauretani F., Valenti G. DHEA and cognitive function in the elderly. J. Steriod. Biochem. Mol. Biol. 2015;145:281–292. doi: 10.1016/j.jsbmb.2014.03.014.
    1. Davis S.R., Shah S.M., McKenzie D.P., Kulkarni J., Davison S.L., Bell R.J. Dehydroepiandrosterone sulfate levels are associated with more favorable cognitive function in women. J. Clin. Endocrinol. Metab. 2008;93:801–808. doi: 10.1210/jc.2007-2128.
    1. Lupien S., Nair N., Briére S., Maheu F., Tu M., Lemay Μ., Meaney M. Increased cortisol levels and impaired cognition in human aging: Implication for depression and dementia in later life. Rev. Neurosci. 1999;10:117–140. doi: 10.1515/REVNEURO.1999.10.2.117.
    1. Lupien S.J., Leon M.D., Santi S.D., Convit A., Tarshish C., Nair N.P., Meaney M.J. Cortisol, human aging, hippocampal atrophy, and memory deficits. Neuroscientist. 1998;4:389–390.
    1. Csernansky J.G., Dong H., Fagan A.M., Wang L., Xiong C., Holtzman D.M., Morris J.C. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry. 2006;163:2164–2169. doi: 10.1176/ajp.2006.163.12.2164.
    1. Lara J., Cooper R., Nissan J., Ginty A.T., Khaw K.T., Deary I.J., Lord J.M., Kuh D., Mathers J.C. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015;13:222. doi: 10.1186/s12916-015-0470-9.
    1. Lara V.P., Caramelli P., Teixeira A.L., Barbosa M.T., Carmona K.C., Carvalho M.G., Fernandes A.P., Gomes K.B. High cortisol levels are associated with cognitive impairment no-dementia (CIND) and dementia. Clin. Chim. Acta. 2013;423:18–22. doi: 10.1016/j.cca.2013.04.013.
    1. Tortosa-Martínez J., Clow A., Caus-Pertegaz N., González-Caballero G., Abellán-Miralles I., Saenz M.J. Exercise increases the dynamics of diurnal cortisol secretion and executive function in people with amnestic mild cognitive impairment. J. Aging Phys. Act. 2015;23:550–558. doi: 10.1123/japa.2014-0006.
    1. Beglinger L.J., Gaydos B., Tangphao-Daniels O., Duff K., Kareken D.A., Crawford J., Fastenau P.S., Siemers E.R. Practice effects and the use of alternate forms in serial neuropsychological testing. Arch. Clin. Neuropsychol. 2005;20:517–529. doi: 10.1016/j.acn.2004.12.003.
    1. Veterans Health Administration Handbook 2007. [(accessed on 1 July 2018)]; Available online: .
    1. Eggenberger P., Wolf M., Schumann M., de Bruin E. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults. Front. Aging Neurosci. 2016;8:66. doi: 10.3389/fnagi.2016.00066.
    1. Ogawa E., You T., Leveille S. Potential benefits of exergaming for cognition and dual-task function in older adults: A systematic review. J. Aging Phys. Act. 2016;24:332–336. doi: 10.1123/japa.2014-0267.
    1. Strauss E., Sherman E.M., Spreen O. A compendium of Neuropsychological Tests: Administration, Norms, and Commentary. Oxford University Press; New York, NY, USA: 2006.
    1. Lee K., Baniqued P., Cosman J., Mullen S., McAuley E., Severson J., Kramer A.F. Examining cognitive function across the lifespan using a mobile application. Comput. Hum. Behav. 2012;28:1934–1946. doi: 10.1016/j.chb.2012.05.013.
    1. Lesh T.A., Westphal A.J., Niendam T.A., Yoon J.H., Minzenberg M.J., Ragland J.D., Carter C.S. Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage Clin. 2013;2:590–599. doi: 10.1016/j.nicl.2013.04.010.
    1. Van der Elst W., Van Boxtel M., Van Breukelen G., Jolles J. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13:62–79. doi: 10.1177/1073191105283427.
    1. Scarpina F., Tagini S. The stroop color and word test. Front. Psychol. 2017;8:557. doi: 10.3389/fpsyg.2017.00557.
    1. Wecker N.S., Kramer J.H., Wisniewski A., Delis D.C., Kaplan E. Age effects on executive ability. Neuropsychology. 2000;14:409. doi: 10.1037/0894-4105.14.3.409.
    1. D’Elia L.G., Satz P., Uchiyama C.L., White T. Color Trails Test (CTT) Psychological Assessment Resources; Odessa, FL, USA: 1996.
    1. Harrison J. Measuring cognitive change in Alzheimer’s disease clinical drug trials. J. Nutr. Health Aging. 2007;11:327–329.
    1. Podhorna J., Krahnke T., Shear M., Harrison J.E. Alzheimer’s Disease Assessment Scale-Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: Change over time and the effect of enrichment strategies. Alzheimer’s Res. Ther. 2016;8:8. doi: 10.1186/s13195-016-0170-5.
    1. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I., Chertkow H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Schillaci A. Bachelor’s Thesis. Union College; Schenectady, NY, USA: June 2017. Neuropsychological Effects of the Interactive Physical and Cognitive Exercise System (iPACES™) for Older Adults: Executive Function and Mood.
    1. Gray W.D. Plateaus and asymptotes: Spurious and real limits in human performance. Curr. Dir. Psychol. Sci. 2017;26:59–67. doi: 10.1177/0963721416672904.
    1. Guazzo E.P., Kirkpatrick P.J., Goodyer I.M., Shiers H.M., Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J. Clin. Endocrinol. Metabol. 1996;81:3951–3960. doi: 10.1210/jcem.81.11.8923843.
    1. Mura G., Cossu G., Migliaccio G.M., Atzori C., Nardi A.E., Machado S., Carta M.G. Quality of life, cortisol blood levels and exercise in older adults: Results of a randomized controlled trial. Clin. Pract. Epidemiol. Ment. Health. 2014;10:67–72. doi: 10.2174/1745017901410010067.
    1. Chew J., Chong M.S., Fong Y.L., Tay L. Outcomes of a multimodal cognitive and physical rehabilitation program for persons with mild dementia and their caregivers: A goal-oriented approach. Clin. Int. Aging. 2015;10:1687. doi: 10.2147/CIA.S93914.
    1. Chuang L.Y., Hung H.Y., Huang C.J., Chang Y.K., Hung T.M. A 3-month intervention of Dance Dance Revolution improves interference control in elderly females: A preliminary investigation. Exp. Brain Res. 2015;233:1181–1188. doi: 10.1007/s00221-015-4196-x.
    1. Dunkin J., Anderson-Hanley C. Dementia caregiver burden: A review of the literature and guidelines for assessment and intervention. Neurology. 1998;51:S53–S60. doi: 10.1212/WNL.51.1_Suppl_1.S53.
    1. Loprinzi P.D., Frith E. The Role of Sex in Memory Function: Considerations and Recommendations in the Context of Exercise. J. Clin. Med. 2018;7 doi: 10.3390/jcm7060132.
    1. Barha C., Davis J., Falck R., Nagamatsu L., Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocr. 2017;46:71–85. doi: 10.1016/j.yfrne.2017.04.002.
    1. Osho O., Owoeye O., Armijo-Olivo S. Adherence and Attrition in Fall Prevention Exercise Programs for Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2018;26:304–326. doi: 10.1123/japa.2016-0326.
    1. Köbe T., Witte A.V., Schnelle A., Lesemann A., Fabian S., Tesky V.A., Pantel J., Flöel A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage. 2016;131:226–238. doi: 10.1016/j.neuroimage.2015.09.050.
    1. Tricco A.C., Soobiah C., Berliner S., Ho J.M., Ng C.H., Ashoor H.M., Chen M.H., Hemmelgarn B., Straus S.E. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: A systematic review and meta-analysis. Can. Med. Assoc. J. 2013;185:1393–1401. doi: 10.1503/cmaj.130451.
    1. Kosmat H., Vranic A. The efficacy of a dance intervention as cognitive training for the old-old. J. Aging Phys. Act. 2017;25:32–40. doi: 10.1123/japa.2015-0264.
    1. Merom D., Grunseit A., Eramudugolla R., Jefferis B., Mcneill J., Anstey K.J. Cognitive benefits of social dancing and walking in old age: The dancing mind randomized controlled trial. Front. Aging Neurosci. 2016;8:26. doi: 10.3389/fnagi.2016.00026.
    1. Burzynska A.Z., Jiao Y., Knecht A.M., Fanning J., Awick E.A., Chen T., Gothe N., Voss M.W., McAuley E., Kramer A.F. White matter integrity declined over 6-months, but dance intervention improved integrity of the fornix of older adults. Front. Aging Neurosci. 2017;9:59. doi: 10.3389/fnagi.2017.00059.
    1. Cohen J., Rudolph E., Anderson-Hanley C. Aerobic and cognitive exercise over time: Virtual versus outdoor cycling. Presented at the annual meeting of the Society of Behavioral Medicine, Philadelphia, PA. Ann. Behav. Med. 2013;47:S282.
    1. Nelson L., Tabet N. Slowing the progression of Alzheimer’s disease; what works? Ageing Res. Rev. 2015;23:193–209. doi: 10.1016/j.arr.2015.07.002.
    1. Wayne P.M., Walsh J.N., Taylor-Piliae R.E., Wells R.E., Papp K.V., Donovan N.J., Yeh G.Y. Effect of Tai Chi on cognitive performance in older adults: Systematic review and meta-Analysis. J. Am. Geriatr. Soc. 2014;62:25–39. doi: 10.1111/jgs.12611.
    1. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K., Shimokata H., Washimi Y., Endo H., Kato T. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013;8:e61483. doi: 10.1371/journal.pone.0061483.
    1. Smith G.E. Healthy cognitive aging and dementia prevention. Am. Psychol. 2016;71:268. doi: 10.1037/a0040250.
    1. Abbasi J. Adam Gazzaley, MD, PhD: Developing Prescribable Video Games. JAMA. 2018;320:16–18. doi: 10.1001/jama.2018.4985.

Source: PubMed

3
Sottoscrivi