Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2)

William G Lima, Júlio C M Brito, Waleska S da Cruz Nizer, William G Lima, Júlio C M Brito, Waleska S da Cruz Nizer

Abstract

The emergence of novel coronavirus (SARS-CoV-2) in 2019 in China marked the third outbreak of a highly pathogenic coronavirus infecting humans. The novel coronavirus disease (COVID-19) spread worldwide, becoming an emergency of major international concern. However, even after a decade of coronavirus research, there are still no licensed vaccines or therapeutic agents to treat the coronavirus infection. In this context, apitherapy presents as a promising source of pharmacological and nutraceutical agents for the treatment and/or prophylaxis of COVID-19. For instance, several honeybee products, such as honey, pollen, propolis, royal jelly, beeswax, and bee venom, have shown potent antiviral activity against pathogens that cause severe respiratory syndromes, including those caused by human coronaviruses. In addition, the benefits of these natural products to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells, and stimulation of the innate and adaptive immune responses. Thus, in the absence of specific antivirals against SARS-CoV-2, apitherapy could offer one hope toward mitigating some of the risks associated with COVID-19.

Keywords: COVID-19; antiviral; bee venom; beeswax; honey; honeybees; pollen; propolis; royal jelly.

Conflict of interest statement

The authors declare that they have no financial interests or personal relationships that may appear to influence the work reported in this article.

© 2020 John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Schematic representation of the main effects of bee products that can be exploited against the novel coronavirus (SARS‐CoV‐2) [Colour figure can be viewed at wileyonlinelibrary.com]

References

    1. Ahn, D. G. , Shin, H. J. , Kim, M. H. , Lee, S. , Kim, H. S. , Myoung, J. , … Kim, S. J. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID‐19). Journal of Microbiology and Biotechnology, 30(3), 313–324. 10.4014/jmb.2003.03011
    1. Anjum, S. I. , Ullah, A. , Khan, K. A. , Attaullah, M. , Khan, H. , Ali, H. , … Dash, C. K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), 1695–1703. 10.1016/j.sjbs.2018.08.013
    1. Babaei, S. , Rahimi, S. , Karimi, T. M. A. , Tahmasebi, G. , & Khaleghi Miran, S. N. (2016). Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. Veterinary Research Forum: An International Quarterly Journal, 7(1), 13–20.
    1. Banjarnahor, S. D. S. , & Artanti, N. (2014). Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4), 239–244. 10.13181/mji.v23i4.1015
    1. Biancatelli, R. M. L. C. , Berrill, M. , Catravas, J. D. , & Marik, P. E. (2020). Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS‐CoV‐2 related disease (COVID‐19). Frontiers in Immunology, 11, 1451–1465. 10.3389/fimmu.2020.01451
    1. Brockway, S. M. , & Denison, M. R. (2004). Molecular targets for the rational design of drugs to inhibit SARS coronavirus. Drug Discovery Today: Disease Mechanisms, 1(2), 205–209. 10.1016/j.ddmec.2004.08.016
    1. Brown, H. L. , Roberts, A. E. L. , Cooper, R. , & Jenkins, R. E. (2016). A review of selected bee products as potential antibacterial, antifungal, and antiviral agents. Medical Research Archives, 4(7), 1–12. 10.18103/mra.v4i8.887
    1. Caramalho, I. , Melo, A. , Pedro, E. , Barbosa, M. M. P. , Victorino, R. M. M. , Pereira Santos, M. C. , & Sousa, A. E. (2015). Bee venom enhances the differentiation of human regulatory T cells. Allergy, 70(10), 1340–1345. 10.1111/all.12691
    1. Carpes, S. T. , de Alencar, S. M. , Cabral, I. S. R. , Oldoni, T. L. C. , Mourão, G. B. , Haminiuk, C. W. I. , … Masson, M. L. (2013). Polyphenols and palynological origin of bee pollen of Apis mellifera L. from Brazil. Characterization of polyphenols of bee pollen. CyTA Journal of Food, 11(2), 150–161. 10.1080/19476337.2012.711776
    1. Centers for Disease Control and Prevention . (2020). Human coronavirus types. Retrieved from .
    1. Chen, L. , Li, J. , Luo, C. , Liu, H. , Xu, W. , Chen, G. , … Jiang, H. (2006). Binding interaction of quercetin‐3‐β‐galactoside and its synthetic derivatives with SARS‐CoV 3CLpro: Structure‐activity relationship studies reveal salient pharmacophore features. Bioorganic and Medicinal Chemistry, 14(24), 8295–8306. 10.1016/j.bmc.2006.09.014
    1. Choi, H. J. , Song, J. H. , & Kwon, D. H. (2011). Quercetin 3‐rhamnoside exerts antiinfluenza A virus activity in mice. Phytotherapy Research, 26(3), 1–12. 10.1002/ptr.3529
    1. Cianciosi, D. , Forbes‐Hernández, T. Y. , Afrin, S. , Gasparrini, M. , Reboredo‐Rodriguez, P. , … Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 1–15. 10.3390/molecules23092322
    1. Coronavirus Cases . (2020). Worldometer. Retrieved from .
    1. Dayem, A. A. , Choi, H. Y. , Kim, Y. B. , & Cho, S.‐G. (2015). Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 10(3), e0121610. 10.1371/journal.pone.0121610
    1. De‐Melo, A. A. M. , de Almeida‐Muradian, L. B. , Sancho, M. T. , & Pascual‐Maté, A. (2018). Composición y propiedades de la miel de Apis mellifera: una revisión. Journal of Apicultural Research , 57(1), 5–37. 10.1080/00218839.2017.1338444
    1. Deng, Y. , Liu, W. , Liu, K. , Fang, Y. Y. , Shang, J. , zhou, L. , … Liu, H. G. (2020). Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID‐19) in Wuhan, China. Chinese Medical Journal, 1, 1–15. 10.1097/cm9.0000000000000824
    1. Denisow, B. , & Denisow‐Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: A review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. 10.1002/jsfa.7729
    1. Fatrcová‐Šramková, K. , Nôžková, J. , Kačániová, M. , Máriássyová, M. , Rovná, K. , & Stričík, M. (2013). Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health ‐ Part B Pesticides, Food Contaminants, and Agricultural Wastes, 48(2), 133–138. 10.1080/03601234.2013.727664
    1. Filipic, B. , & Likar, M. (1976a). Inhibitory effect of propolis and royal jelly on some viruses. In Filipic B. (Ed.), Interferon scientific memoranda (pp. 13–16). Bufallo, NY: Calspan Corporation.
    1. Filipic, B. , & Likar, M. (1976b). Clinical value of royal jelly and propolis against viral infections. In Filipic B. (Ed.), Interferon scientific memoranda (pp. 18–32). Bufallo, NY: Calspan Corporation.
    1. Fontana, R. , Mendes, M. A. , de Souza, B. M. , Konno, K. , César, L. M. M. , Malaspina, O. , & Palma, M. S. (2004). Jelleines: A family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides, 25(6), 919–928. 10.1016/j.peptides.2004.03.016
    1. Fratini, F. , Cilia, G. , Mancini, S. , & Felicioli, A. (2016a). Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 192, 130–141. 10.1016/j.micres.2016.06.007
    1. Fratini, F. , Cilia, G. , Turchi, B. , & Felicioli, A. (2016b). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839–843. 10.1016/j.apjtm.2016.07.003
    1. Ganesan, S. , Faris, A. N. , Comstock, A. T. , Wang, Q. , Nanua, S. , Hershenson, M. B. , & Sajjan, U. S. (2012). Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Research, 94(3), 258–271. 10.1016/j.antiviral.2012.03.005
    1. Hashem, H . (2020). In Silico Approach of Some Selected Honey Constituents as SARS‐CoV‐2 Main Protease (COVID‐19) Inhibitors. ChemRxiv. 10.26434/CHEMRXIV.12115359.V2
    1. Kaul, T. N. , Middleton, E. , & Ogra, P. L. (1985). Antiviral effect of flavonoids on human viruses. Journal of Medical Virology, 15(1), 71–79. 10.1002/jmv.1890150110
    1. Komaravelli, N. , Kelley, J. P. , Garofalo, M. P. , Wu, H. , Casola, A. , & Kolli, D. (2015). Role of dietary antioxidants in human metapneumovirus infection. Virus Research, 200(C), 19–23. 10.1016/j.virusres.2015.01.018
    1. Küpeli Akkol, E. , Orhan, D. D. , Gürubüz, I. , & Yesilada, E. (2010). In vivo activity assessment of a “honey‐bee pollen mix” formulation. Pharmaceutical Biology, 48(3), 253–259. 10.3109/13880200903085482
    1. Kwon, M. J. , Shin, H. M. , Perumalsamy, H. , Wang, X. , & Ahn, Y. J. (2019). Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. Journal of Apicultural Research, 59, 413–425. 10.1080/00218839.2019.1695715
    1. Lansbury, L. , Lim, B. , Baskaran, V. , & Lim, W. S. (2020). Co‐infections in people with COVID‐19: A systematic review and meta‐analysis. Journal of Infection, 81(2), 266–275. 10.1016/j.jinf.2020.05.046
    1. Lee, S. Y. , Shin, J. H. , Park, K. H. , Kim, J. H. , Shin, M. G. , Suh, S. P. , … Kim, S. H. (2014). Identification, genotypic relation, and clinical features of colistin‐resistant isolates of acinetobacter genomic species 13BJ/14TU from bloodstreams of patients in a university hospital. Journal of Clinical Microbiology, 52(3), 931–939. 10.1128/JCM.02868-13
    1. Li, Y. , Zhang, J. , Wang, N. , Li, H. , Shi, Y. , Guo, G. , … Zou, Q. (2020). Therapeutic drugs targeting 2019‐nCoV main protease by high‐throughput screening. BioRxiv, 1, 1–12. 10.1101/2020.01.28.922922
    1. Lim, Y. , Ng, Y. , Tam, J. , & Liu, D. (2016). Human coronaviruses: A review of virus–host interactions. Diseases, 4(4), 26. 10.3390/diseases4030026
    1. Mărgăoan, R. , Mărghitaş, L. A. , Dezmirean, D. S. , Gherman, B. , Chirilă, F. , Zacharias, I. , & Bobiş, O. (2015). Antimicrobial activity of bee pollen ethanolic and methanolic extracts on Staphylococcus aureus bacterial strain. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca. Animal Science and Biotechnologies, 72(1), 1–17. 10.15835/buasvmcn-asb:10791
    1. Memariani, H. , Memariani, M. , Shahidi‐Dadras, M. , Nasiri, S. , Akhavan, M. M. , & Moravvej, H. (2019). Melittin: From honeybees to superbugs. Applied Microbiology and Biotechnology, 103(8), 3265–3276. 10.1007/s00253-019-09698-y
    1. Meo, S. A. , Al‐Asiri, S. A. , Mahesar, A. L. , & Ansari, M. J. (2017). Role of honey in modern medicine. Saudi Journal of Biological Sciences, 24(5), 975–978. 10.1016/j.sjbs.2016.12.010
    1. Mohamed, A. F. , Hassan, M. , Hammad, K. M. , Amer, M. A. , & Riad, S. A. (2015). Monitoring of the antiviral potential of bee venom and wax extracts against adeno ‐ 7 (DNA) and Rift Valley fever virus (RNA) viruses models. Journal of the Egyptian Society of Parasitology, 45(1), 193–198. 10.12816/0010865
    1. Pan, M. H. , Lai, C. S. , & Ho, C. T. (2010). Anti‐inflammatory activity of natural dietary flavonoids. Food & Function, 1(1), 15–31. 10.1039/c0fo00103a
    1. Park, S. E. (2020). Epidemiology, virology, and clinical features of severe acute respiratory syndrome ‐coronavirus‐2 (SARS‐CoV‐2; coronavirus Disease‐19). Clinical and Experimental Pediatrics, 63, 119–124. 10.3345/cep.2020.00493
    1. Perumal Samy, R. , Stiles, B. G. , Franco, O. L. , Sethi, G. , & Lim, L. H. K. (2017). Animal venoms as antimicrobial agents. Biochemical Pharmacology, 134, 127–138. 10.1016/j.bcp.2017.03.005
    1. Rehman, M. T. , AlAjmi, M. F. , & Hussain, A. (2020). Natural compounds as inhibitors of SARS‐CoV‐2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID‐19. ChemRxiv, 10.26434/CHEMRXIV.12362333.V2
    1. Rzepecka‐Stojko, A. , Stojko, J. , Kurek‐Górecka, A. , Górecki, M. , Kabała‐Dzik, A. , Kubina, R. , … Iriti, M. (2015). Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules, 20(12), 21732–21749. 10.3390/molecules201219800
    1. Samarghandian, S. , Farkhondeh, T. , & Samini, F. (2017). Honey and health: A review of recent clinical research. Pharmacognosy Research, 9(2), 121–127. 10.4103/0974-8490.204647
    1. Schnitzler, P. , Neuner, A. , Nolkemper, S. , Zundel, C. , Nowack, H. , Sensch, K. H. , & Reichling, J. (2010). Antiviral activity and mode of action of propolis extracts and selected compounds. Phytotherapy Research, 24(S1), S20–S28. 10.1002/ptr.2868
    1. Schwarz, S. , Sauter, D. , Wang, K. , Zhang, R. , Sun, B. , Karioti, A. , … Schwarz, W. (2014). Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Medica, 80(2–3), 177–182. 10.1055/s-0033-1360277
    1. Shimizu, T. , Hino, A. , Tsutsumi, A. , Park, Y. K. , Watanabe, W. , & Kurokawa, M. (2008). Anti‐influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice. Antiviral Chemistry & Chemotherapy, 19(1), 7–13. 10.1177/095632020801900102
    1. Siheri, W. , Alenezi, S. , Tusiimire, J. , & Watson, D. G. (2017). The chemical and biological properties of propolis. Bee Products ‐ Chemical and Biological Properties, 42, 137–178. 10.1007/978-3-319-59689-1_7
    1. Song, J. H. , Park, K. S. , Kwon, D. H. , & Choi, H. J. (2013). Anti–human rhinovirus 2 activity and mode of action of quercetin‐7‐glucoside from Lagerstroemia speciosa . Journal of Medicinal Food, 16(4), 274–279. 10.1089/jmf.2012.2290
    1. Svečnjak, L. , Chesson, L. A. , Gallina, A. , Maia, M. , Martinello, M. , Mutinelli, F. , … Waters, T. A. (2019). Standard methods for Apis mellifera beeswax research. Journal of Apicultural Research, 58(2), 1–18. 10.1080/00218839.2019.1571556
    1. Šver, L. , Oršolić, N. , Tadić, Z. , Njari, B. , Valpotić, I. , & Bašić, I. (1996). A royal jelly as a new potential immunomodulator in rats and mice. Comparative Immunology, Microbiology and Infectious Diseases, 19(1), 31–38. 10.1016/0147-9571(95)00020-8
    1. Takeshita, T. , Watanabe, W. , Toyama, S. , Hayashi, Y. , Honda, S. , Sakamoto, S. , … Kurokawa, M. (2013). Effect of Brazilian propolis on exacerbation of respiratory syncytial virus infection in mice exposed to tetrabromobisphenol A, a brominated flame retardant. Evidence‐Based Complementary and Alternative Medicine, 2013, 1–11.
    1. Thakur, M. , & Nanda, V. (2020). Composition and functionality of bee pollen: A review. Trends in Food Science and Technology, 98, 82–106. 10.1016/j.tifs.2020.02.001
    1. Uddin, M. B. , Lee, B. H. , Nikapitiya, C. , Kim, J. H. , Kim, T. H. , Lee, H. C. , … Kim, C. J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology, 54(12), 853–866. 10.1007/s12275-016-6376-1
    1. Watanabe, K. , Rahmasari, R. , Matsunaga, A. , Haruyama, T. , & Kobayashi, N. (2014). Anti‐influenza viral effects of honey in vitro: Potent high activity of Manuka honey. Archives of Medical Research, 45(5), 359–365. 10.1016/j.arcmed.2014.05.006
    1. Wehbe, R. , Frangieh, J. , Rima, M. , El Obeid, D. , Sabatier, J. M. , & Fajloun, Z. (2019). Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules, 24(16), 1–12. 10.3390/molecules24162997
    1. Yi, L. , Li, Z. , Yuan, K. , Qu, X. , Chen, J. , Wang, G. , … Xu, X. (2004). Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology, 78(20), 11334–11339. 10.1128/jvi.78.20.11334-11339.2004
    1. Zhai, P. , Ding, Y. , Wu, X. , Long, J. , Zhong, Y. , & Li, Y. (2020). The epidemiology, diagnosis and treatment of COVID‐19. International Journal of Antimicrobial Agents, 55(5), 105955. 10.1016/j.ijantimicag.2020.105955
    1. Zhu, F. C. , Li, Y. H. , Guan, X. H. , Hou, L. H. , Wang, W. J. , Li, J. X. , … Chen, W. (2020a). Safety, tolerability, and immunogenicity of a recombinant adenovirus type‐5 vectored COVID‐19 vaccine: A dose‐escalation, open‐label, non‐randomised, first‐in‐human trial. The Lancet, 395(10240), 1845–1854. 10.1016/S0140-6736(20)31208-3
    1. Zhu, N. , Zhang, D. , Wang, W. , Li, X. , Yang, B. , Song, J. , … Tan, W. (2020b). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. 10.1056/NEJMoa2001017

Source: PubMed

3
Sottoscrivi