Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches

Jianhua Zhang, Jianhua Zhang

Abstract

Autophagy is a lysosomal mediated degradation activity providing an essential mechanism for recycling cellular constituents, and clearance of excess or damaged lipids, proteins and organelles. Autophagy involves more than 30 proteins and is regulated by nutrient availability, and various stress sensing signaling pathways. This article provides an overview of the mechanisms and regulation of autophagy, its role in health and diseases, and methods for its measurement. Hopefully this teaching review together with the graphic illustrations will be helpful for instructors teaching graduate students who are interested in grasping the concepts and major research areas and introducing recent developments in the field.

Keywords: Aging; Beclin; LC3; Mitochondria; Neurodegenerative diseases; mTOR.

Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
The 3 types of autophagy. Lysosomal-mediated degradation of cellular contents, or autophagy, is divided into 3 general categories. 1. Microautophagy is defined by ultrastructural studies as performed by lysosomal/endosomal invagination of nearby cellular contents, or lysosomal extension to wrap around cellular contents, to engulf and degrade lipids, proteins and organelles. It has been shown to depend on ATP and microfilaments and be facilitated by HSC70-phospholipid interactions. 2. Chaperone-mediated autophagy is dependent on lysosomal LAMP-2A membrane receptor and chaperone HSC70 protein recognizing unfolded proteins that carry KFERQ consensus sequences. 3. Macroautophagy is characterized by formation of double membrane vesicles that recognize and encircle intracellular excessive or damaged lipids, proteins and organelles. The autophagic vesicles, or autophagosomes, then fuse with lysosomes, and their contents degraded by lysosomal enzymes. These 3 types of autophagy have shared as well as independent machineries, and their activities may compensate or regulate one another.
Fig. 2
Fig. 2
Proteins involved in autophagosome formation. 1. Initiation of autophagosomal formation is regulated by mTOR inhibition. In response to insulin receptor withdrawal, amino acid starvation, low ATP, mTOR is inhibited, resulting in ULK1 activation and initiation of autophagy. 2. Beclin-1/VPS34/VPS15/Atg14 complex formation also plays an important role in nucleation of autophagic vesicles. 3. Extension of autophagosomal membranes are regulated by 2 ubiquitin-like conjugation pathways, with both LC3 and Atg12 resembling ubiquitin structure. One involves Atg7 and Atg10 acting as E1 and E2 enzymes, sequentially conjugating with Atg12 via glycine–cysteine thioester bonds, eventually conjugating Atg12 to Atg5 at a lysine residue through an isopeptide bond, resulting in Atg5/Atg12/Atg16 complex association with autophagosomal membranes. The other involves Atg4 cleaving pro-LC3 exposing a glycine residue at the C-terminal, conjugation of LC3-I with Atg7, then Atg3 via thioester bonds, resulting in conjugation of LC3-I with phosphotidylethanolamine (PE) through an amide bond, forming LC3-II and insertion into autophagosomal membranes. 4. Recognition of cargo can be mediated by adaptor proteins such as p62 that has an ubiquitin binding domain as well as an LC3-II interacting domain.
Fig. 3
Fig. 3
mTOR in sensing autophagy signals : mTOR inhibition integrates amino acid starvation, growth factor deprivation, decreased ATP or oxygen levels, enhanced reactive oxygen species (ROS) to activate autophagy. Amino acid deprivation leads to mTOR dissociation with lysosomes. An association of AMPK with the late endosomes in response to glucose starvation also leads to dissociation and inactivation of mTOR. ATP depletion activates AMPK which can activate TSC1/2 and thereby inhibits mTOR, or activates ULK1 to activate autophagy. In addition, mitochondrial generated ROS may also induce autophagy via an AMPK mediated pathway. Growth factor deprivation leads to activation of TSC1/2, inactivation of Rheb, and inactivation of mTOR. Peroxisomal TSC1/2 localizes to peroxisomes through binding to PEX19 and PEX5, and can be activated by peroxisomal ROS to inhibit mTOR activities and induce autophagy. Oxygen deprivation may activate autophagy by HIF1α-mediated transcription activation of BNIP3 which inhibits Rheb. mTOR inhibition activates autophagy by activation of ULK1, VPS34 and TFEB, a master transcription activator of genes encoding autophagy and lysosomal proteins. Conformational inhibitors of mTOR such as rapamycin and catalytic inhibitors such as Torin1 have been shown to induce autophagy.
Fig. 4
Fig. 4
Beclin1–VPS34 complex in regulation of autophagy. Beclin-1/VPS34/VPS15/ATG14 complex plays an important role in regulating autophagy and is subjected to transcriptional (e.g., by transcription factor NFκB and E2F) and post-translational controls (phosphorylation or ubiquitination). Beclin-1 can also complex with the anti-apoptotic Bcl-2 protein, attenuating its involvement in autophagic activities. Beclin-1–VPS34 complex is subject to regulation by UVRAG, Bif-1, Rubicon, Ambra1, NRBF2, and HMGB1. PI3P production by VPS34 can be sensed by WIPIs which control the localization of Atg9 and its involvement in autophagy. ALFY can also bind PI3P and associate with p62 and cytoplasmic protein aggregates and mediates their autophagic degradation. PI3K inhibitors wortmannin and 3-methyladenine can inhibit autophagy, although they may have additional impact on other PI3K activities.
Fig. 5
Fig. 5
LC3 function and homologs. (A) LC3 is a microtubule-associated protein, MAP1 light chain 3. These microtubule associated proteins, including MAP2 (A, B, and C) that are restricted to the central nervous system, Tau that is enriched in the central nervous system but also expressed elsewhere, MAP4 that is widely expressed in mammalian tissues, and MAP1 (A, B, and C heavy chain, and light chain 1 and 2 that are enriched in the central nervous system, but also expressed in other tissues), are thought to be important for maintaining cell structure and shape. (B) LC3 has 6 mammalian homologs including LC3A, LC3B, LC3C, GATE16, GABARAP and GABARAPL1. All these homologs can be cleaved by Atg4 at the C-terminal which exposes the glycine residue generating LC3A-I, LC3B-I, LC3C-I, GATE16-I, GABARAP-I and GABARAPL1-I, allowing E1, E2, and E3-like conjugation by Atg7, Atg3 mediated reaction, ending with conjugation with phosphatidylethanolamine (PE), resulting in membrane associated form of LC3A-II, LC3B-II, LC3C-II, GATE16-II, GABARAP-II and GABARAPL1-II.
Fig. 6
Fig. 6
Adaptor proteins that recognize autophagy substrates and/or bridge autophagy substrates with autophagy machineries. (A) P62/SQSTM1 is an important autophagy adaptor protein, with an LC3 interacting region (LIR) that can recognize autophagosomes through binding LC3/GABARAP family proteins, and an ubiquitin association domain (UBA) that can recognize ubiquitinated proteins that are autophagy substrates. Interestingly, p62 can also bind KEAP1 (via a KEAP1 interacting region, KIR), a redox sensor protein, to send KEAP1 for autophagy degradation. This is important for regulation of cellular redox status, since KEAP1 binding to NRF2 allows NRF2 degradation by the proteasomes, and KEAP1 modification or degradation frees NRF2 from the proteasomal degradation, therefore allowing NRF2 to activate transcription of antioxidants, as well as p62 itself. (B) P62/SQSTM1 mutations in the UBA have been found in Paget disease, in wide spread regions of the gene in amyloid lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). (C) NDP52 and optineurin also contain LIR and UBA and are important for recognition of ubiquitinated bacteria and degrade bacteria via xenophagy. (D) Other UBA containing proteins involved in autophagy include HDAC6 and ALFY that are important for aggrephagy. (E) Atg1, 3, 4, Nix, BNIP3, FUNDC1, FYCO1 and TRIM also contain LIR and regulate autophagy.
Fig. 7
Fig. 7
Mitophagy. Mitophagy can be induced by mtDNA damage, mitochondrial electron transport chain inhibition, loss of mitochondrial membrane potential, mitochondrial fission or fragmentation, mitochondrial unfolded or damaged proteins. Mitophagy is important for mitochondrial quality control and thus essential for maintaining cellular energy, calcium homeostasis, redox signaling, mitochondrial–cytosol or mitochondrial–nuclear signaling, and sequestration of apoptotic factors. One major signaling pathway is through inactivation of mitochondrial protease PARL due to loss of membrane potential, thus stabilization of PINK1. PINK1 recruits Parkin which ubiquitinates mitochondrial associated proteins. P62 recognizes ubiquitinated proteins and brings mitochondria to autophagosomes by binding to LC3. Parkin and PINK1 can be regulated by a variety of cellular proteins in many recent studies, including those listed in this diagram. Deubiquitinase USP8 plays an important role in Parkin recruitment to the mitochondria and mitophagy. In contrast USP15 and 30 remove ubiquitin from Parkin substrates and thus attenuate mitophagy. Parkin/PINK1-independent mitophagy also exist, including those mediated or signaled by BNIP3, Nix, FUNDC1 or cardiolipin, which can bind LC3 and directly bring mitochondria to the autophagosomes for mitophagy. In addition, mitochondrial spheroids and mitochondria derived vesicles (MDV) may bring mitochondria to the lysosomes for degradation. In response to loss of mitochondrial membrane potential, choline dehydrogenase (CHDH) can also recruit p62 directly and target mitochondria to mitophagy.
Fig. 8
Fig. 8
Plasma membrane contributes to autophagosomal biogenesis. Localization of autophagosomal associated protein Atg16L1 to plasma membrane and interaction of Atg16L1 with assembly polypeptide 2 (AP2) and clathrin heavy chain have been found to occur prior to the formation of subsequent endosomal-like structures. Knockdown of clathrin heavy chain of AP2 decreased both basal and starvation-induced autophagosomal biogenesis. Atg9 is also internalized by clathrin-mediated endocytosis in Atg16L1-free vesicles. Atg9- and Atg16L1-containing vesicles can undergo VAMP3-mediated heterotypic fusion, and this step also stimulates autophagosomal formation with plasma membrane as a contributing source. Atg16L1-containing vesicles can undergo VAMP7-mediated homotypic fusion which precedes the acquisition of LC3 by the plasma membrane-derived phagophore precursors.
Fig. 9
Fig. 9
ER and Golgi contribute to autophagosomal biogenesis. (A) ER donates membranes to autophagosomes. In response to starvation, ULK complex and subsequently Atg14L moves to the ER at a site where vacuole membrane protein (VMP1) also transiently localizes, followed by DFCP1 moving to punctate structures called “omegasomes”, in a Beclin and VPS34 dependent manner, and colocalizes with LC3 and Atg5–Atg12–Atg16L1 complex, this begins the formation of autophagosomes. Recent studies have also found that VMP1-Beclin interaction plays an important role in autophagy induction. (B) ER–Golgi intermediate complex compartment (ERGIC) promotes LC3 lipidation. Autophagosomal formation from ERGIC depends on coat protein complex II (COPII) vesicles. (C) The mitochondria-associated ER membrane (MAM) donates membranes to autophagosomes. Glucose starvation also induces colocalization of LC3 and Atg5 with mitochondria, this localization has been shown to recruit mitochondrial lipids to autophagosomes. Formation of autophagosomes from MAM requires MFN2 or phosphofurin acidic cluster sorting protein 2 (PACS2). The SNARE protein syntaxin 17 (STX17) recruits Atg14L to the MAM sites and further recruits DFCP1.
Fig. 10
Fig. 10
Autophagosome–lysosome fusion. Fusion of autophagosomes and lysosomes depends on lysosomal VAMP7/8 and insertion of SNARE protein syntaxin 17 (STX17) to the autophagosomal membrane and binding SNAP29. Additional factors required or inhibit fusion are listed.
Fig. 11
Fig. 11
Autophagy assessment by LC3-II levels. (A) During normal autophagic flux, LC3-I is conjugated with phosphatidylethanolamine to become LC3-II and inserts into autophagosomal membranes. LC3-II level has been found to be proportional to the amount of autophagosomes and thus has been used for autophagy assessment. (B) Inhibition of autophagy prior to LC3-II generation, either by 3-methyladenine (3-MA) or by knockout/knockdown of Atg7 decreases LC3-II. (C) Activation of autophagy either by starvation or by inhibitors of mTOR such as rapamycin increases LC3-II. (D) Inhibition of lysosomal clearance of autophagosomes, such as chloroquine, bafilomycin, E64+pepstatin A (PepA) also increases LC3-II accumulation. Therefore, to assess if a chemical or a genetic manipulation activates autophagy prior to LC3-I to LC3-II conversion, one approach is to compare LC3-II in response to manipulation alone, lysosomal blockade alone (chloroquine, bafilomycin or E64+pepstatin A), and manipulation in the presence of lysosomal blockade.
Fig. 12
Fig. 12
Autophagic flux assessment using RFP–GFP-LC3. To assess autophagic flux from the autophagosomes to the lysosomes, RFP–GFP-LC3 plasmids can be transfected into cells. Under conditions with minimum autophagosomal accumulation, RFP–GFP-LC3-I is diffused in the cytosol. When RFP–GFP-LC3-I is converted into RFP–GFP-LC3-II and inserted into autophagosomal membrane, RFP and GFP signals colocalize to punctate structures. As autophagosomes fuse with lysosomes, the outer membrane RFP–GFP-LC3-II is delipidated to RFP–GFP-LC3-I and diffused to the cytosolic space, the inner membrane RFP–GFP-LC3-II is quenched for the GFP signal but not the RFP signal. This is due to the lysosomal acidic environment that protonates the fluorophore of the GFP but not RFP because of differences in their pKa values. Therefore, the red only puncta indicate the flux of RFP–GFP-LC3-II protein into the acidic environment of the lysosomes.
Fig. 13
Fig. 13
Mitophagy assessment. Mitophagy is characterized by colocalization of autophagy proteins (such as p62, LC3, Parkin or PINK1) with the mitochondria; colocalization of mitochondria with lysosomal markers (either due to autophagosomal–lysosomal fusion or due to mitochondrial derived vesicles (MDV) fusing with the lysosomes). These characteristics can be used to assess mitophagy activities. In addition, the consequences of mitophagy can be assessed by either a decrease of mitochondrial proteins or DNA, or changes of mitochondrial activities such as reactive species production, oxygen consumption or changes of mitochondrial membrane potential.
Fig. 14
Fig. 14
Role of autophagy and mitophagy in health and diseases. (A) Deficient autophagy due to inhibition of autophagic proteins or mutations of autophagy genes can lead to accumulation of gene mutations, dysfunctional mitochondria and protein aggregates, as well as inability to clear viral particles, as occurs in tumorigenesis, neurodegeneration, aging and infections. Autophagy induction, for example, by rapamycin, trehalose, caloric restriction, Atg5 or Beclin overexpression, has been shown to provide benefits to attenuate disease pathogenesis and extend lifespan. (B) Autophagy has also been shown to provide a detrimental role in established cancer by enhancing survival of cancer cells in nutrient deprived conditions or in response to chemotherapeutics. Inhibiting autophagy, for example by chloroquine treatment, has been investigated as a cancer therapeutic strategy.
Fig. 15
Fig. 15
Future directions. Although we now know that many different conditions (including growth factor, glucose, amino acids or ATP deprivation, deficient or excessive oxygen, reactive species, damage to DNA, lipid, proteins or organelles) may stimulate autophagy, the exactly mechanisms are unclear. Understanding the genetic, epigenetic, transcriptional, and post-translational regulation of autophagy, understanding the regulation of membrane formation, fusion and movement, and understanding the specificity, timing, duration, location of these regulations, understanding the cross regulation of autophagy with proteasomal and NRF2 transcription activities (in regulating expression of antioxidant proteins and p62), and understanding how to apply pharmacological or genetic interventions to achieve maximal beneficial impact without negative outcomes will be important in autophagy biology and its application to medicine.

References

    1. De Duve C., Wattiaux R. Functions of lysosomes. Annual Review of Physiology. 1966;28:435–492.
    1. Clark S.L., Jr. Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. Journal of Biophysical and Biochemical Cytology. 1957;3(3):349–362.
    1. Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. Journal of Cell Biology. 1962;12:198–202.
    1. Novikoff A.B., Essner E. Cytolysomes and mitochondrial degeneration. Journal of Cell Biology. 1962;15:140–146.
    1. Tsukada M., Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. 1993;333(1–2):169–174.
    1. Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology. 1992;119(2):301–311.
    1. Liang X.H., Jackson S., Seaman M., Brown K., Kempkes B., Hibshoosh H., Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–676.
    1. Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology. 2007;8(11):931–937.
    1. Yang Z., Klionsky D.J. Eaten alive: a history of macroautophagy. Nature Cell Biology. 2010;12(9):814–822.
    1. Dodson M., Darley-Usmar V., Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radical Biology and Medicine. 2013;63:207–221.
    1. Levonen A.L., Hill B.G., Kansanen E., Zhang J., Darley-Usmar V.M. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radical Biology and Medicine. 2014;71:196–207.
    1. Giordano S., Darley-Usmar V., Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biology. 2014;2:82–90.
    1. Zhang J. Autophagy and mitophagy in cellular damage control. Redox Biology. 2013;1(1):19–23.
    1. Mijaljica D., Prescott M., Devenish R.J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7(7):673–682.
    1. Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences. 2012;69(7):1125–1136.
    1. Sattler T., Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. Journal of Cell Biology. 2000;151(3):529–538.
    1. Uttenweiler A., Schwarz H., Mayer A. Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. Journal of Biological Chemistry. 2005;280(39):33289–33297.
    1. Schuck S., Gallagher C.M., Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. Journal of Cell Science. 2014;127(18):4078–4088.
    1. Mortimore G.E., Hutson N.J., Surmacz C.A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proceedings of the National Academy of Sciences of the United States of America. 1983;80(8):2179–2183.
    1. Sakai M., Ogawa K. Energy-dependent lysosomal wrapping mechanism (LWM) during autophagolysosome formation. Histochemistry. 1982;76(4):479–488.
    1. Sakai M., Araki N., Ogawa K. Lysosomal movements during heterophagy and autophagy: with special reference to nematolysosome and wrapping lysosome. Journal of Electron Microscopy Technique. 1989;12(2):101–131.
    1. Sahu R., Kaushik S., Clement C.C., Cannizzo E.S., Scharf B., Follenzi A., Potolicchio I., Nieves E., Cuervo A.M., Santambrogio L. Microautophagy of cytosolic proteins by late endosomes. Developmental Cell. 2011;20(1):131–139.
    1. Kaushik S., Bandyopadhyay U., Sridhar S., Kiffin R., Martinez-Vicente M., Kon M., Orenstein S.J., Wong E., Cuervo A.M. Chaperone-mediated autophagy at a glance. Journal of Cell Science. 2011;124(4):495–499.
    1. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal. 2012;441(2):523–540.
    1. Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell Research. 2014;24(1):24–41.
    1. Settembre C., Di Malta C., Polito V.A., Garcia Arencibia M., Vetrini F., Erdin S., Erdin S.U., Huynh T., Medina D., Colella P., Sardiello M., Rubinsztein D.C., Ballabio A. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–1433.
    1. Wani W.Y., Boyer-Guittaut M., Dodson M., Chatham J., Darley-Usmar V., Zhang J. Regulation of autophagy by protein post-translational modification. Laboratory Investigation. 2015;95:14–25.
    1. Dunlop E.A., Tee A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell and Developmental Biology. 2014;36C:121–129.
    1. Zhang J., Kim J., Alexander A., Cai S., Tripathi D.N., Dere R., Tee A.R., Tait-Mulder J., Di Nardo A., Han J.M., Kwiatkowski E., Dunlop E.A., Dodd K.M., Folkerth R.D., Faust P.L., Kastan M.B., Sahin M., Walker C.L. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature Cell Biology. 2013;15(10):1186–1196.
    1. Russell R.C., Yuan H.X., Guan K.L. Autophagy regulation by nutrient signaling. Cell Research. 2014;24(1):42–57.
    1. Shen H.M., Mizushima N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends in Biochemical Sciences. 2014;39(2):61–71.
    1. Bar-Peled L., Schweitzer L.D., Zoncu R., Sabatini D.M. Ragulator Is a GEF for the rag GTPases that signal amino acid Levels to mTORC1. Cell. 2012;150(6):1196–1208.
    1. Inoki K., Li Y., Zhu T., Wu J., Guan K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology. 2002;4(9):648–657.
    1. Dunlop E.A., Tee A.R. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochemical Society Transactions. 2013;41(4):939–943.
    1. Zhao M., Klionsky D.J. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metabolism. 2011;13(2):119–120.
    1. Alers S., Löffler A.S., Wesselborg S., Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and Cellular Biology. 2012;32(1):2–11.
    1. Zhang C.S., Jiang B., Li M., Zhu M., Peng Y., Zhang Y.L., Wu Y.Q., Li T.Y., Liang Y., Lu Z., Lian G., Liu Q., Guo H., Yin Z., Ye Z., Han J., Wu J.W., Yin H., Lin S.Y., Lin S.C. The lysosomal V-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metabolism. 2014;20(3):526–540.
    1. Semenza G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual Review of Pathology. 2014;9:47–71.
    1. Li Y., Wang Y., Kim E., Beemiller P., Wang C.Y., Swanson J., You M., Guan K.L. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. Journal of Biological Chemistry. 2007;282(49):35803–35813.
    1. Alexander A., Cai S.L., Kim J., Nanez A., Sahin M., MacLean K.H., Inoki K., Guan K.L., Shen J., Person M.D., Kusewitt D., Mills G.B., Kastan M.B., Walker C.L. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(9):4153–4158.
    1. Yuan H.X., Russell R.C., Guan K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. 2013;9(12):1983–1995.
    1. Settembre C., Zoncu R., Medina D.L., Vetrini F., Erdin S., Erdin S., Huynh T., Ferron M., Karsenty G., Vellard M.C., Facchinetti V., Sabatini D.M., Ballabio A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO Journal. 2012;31(5):1095–1108.
    1. Martina J.A., Chen Y., Gucek M., Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–914.
    1. Gangloff Y.G., Mueller M., Dann S.G., Svoboda P., Sticker M., Spetz J.F., Um S.H., Brown E.J., Cereghini S., Thomas G., Kozma S.C. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Journal of Molecular Cell Biology. 2004;24(21):9508–9516.
    1. Cheong H., Wu J., Gonzales L.K., Guttentag S.H., Thompson C.B., Lindsten T. Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy. 2014;10(1):45–56.
    1. Guertin D.A., Sabatini D.M. The pharmacology of mTOR inhibition. Science Signaling. 2009;2(67):e24.
    1. Kang R., Zeh H.J., Lotze M.T., Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation. 2011;18(4):571–580.
    1. Wirth M., Joachim J., Tooze S.A. Autophagosome formation − the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Seminars in Cancer Biology. 2013;23(5):301–309.
    1. Marsh S.A., Powell P.C., Dell’Italia L.J., Chatham J.C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sciences. 2013;92(11):648–656.
    1. Lu J., He L., Behrends C., Araki M., Araki K., Jun W.Q., Catanzaro J.M., Friedman S.L., Zong W.X., Fiel M.I., Li M., Yue Z. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nature Communications. 2014;5:3920.
    1. Polson H.E., de Lartigue J., Rigden D.J., Reedijk M., Urbé S., Clague M.J., Tooze S.A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6(4):506–522.
    1. Tooze S.A., Jefferies H.B., Kalie E., Longatti A., McAlpine F.E., McKnight N.C., Orsi A., Polson H.E., Razi M., Robinson D.J., Webber J.L. Trafficking and signaling in mammalian autophagy. IUBMB Life. 2010;62(7):503–508.
    1. Filimonenko M., Isakson P., Finley K.D., Anderson M., Jeong H., Melia T.J., Bartlett B.J., Myers K.M., Birkeland H.C., Lamark T., Krainc D., Brech A., Stenmark H., Simonsen A., Yamamoto A. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Molecular Cell. 2010;38(2):265–279.
    1. Clausen T.H., Lamark T., Isakson P., Finley K., Larsen K.B., Brech A., Øvervatn A., Stenmark H., Bjørkøy G., Simonsen A., Johansen T. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010;6(3):330–344.
    1. Simonsen A., Birkeland H.C., Gillooly D.J., Mizushima N., Kuma A., Yoshimori T., Slagsvold T., Brech A., Stenmark H. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of Cell Science. 2004;117(18):4239–4251.
    1. Yue Z., Jin S., Yang C., Levine A.J., Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):15077–15082.
    1. Jaber N., Dou Z., Chen J.S., Catanzaro J., Jiang Y.P., Ballou L.M., Selinger E., Ouyang X., Lin R.Z., Zhang J., Zong W.X. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(6):2003–2008.
    1. Jaber N., Dou Z., Lin R.Z., Zhang J., Zong W.X. Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart. Autophagy. 2012;8(4):707–708.
    1. Zhou X., Wang L., Hasegawa H., Amin P., Han B.X., Kaneko S., He Y., Wang F. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(20):9424–9429.
    1. Zhou X., Wang F. Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond. Autophagy. 2010;6(6):798–799.
    1. Seglen P.O., Gordon P.B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proceedings of the National Academy of Sciences of the United States of America. 1982;79(6):1889–1892.
    1. Wu Y.T., Tan H.L., Shui G., Bauvy C., Huang Q., Wenk M.R., Ong C.N., Codogno P., Shen H.M. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. Journal of Biological Chemistry. 2010;285(14):10850–10861.
    1. O’Farrell F., Rusten T.E., Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS Journal. 2013;280(24):6322–6337.
    1. Geng J., Klionsky D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. Protein modifications: beyond the usual suspects. EMBO Reports. 2008;9:859–864.
    1. Maccioni R.B., Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiological Reviews. 1995;75(4):835–864.
    1. Boyer-Guittaut M., Poillet L., Liang Q., Bôle-Richard E., Ouyang X., Benavides G.A., Chakrama F.Z., Fraichard A., Darley-Usmar V.M., Despouy G., Jouvenot M., Delage-Mourroux R., Zhang J. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy. 2014;10(6):986–1003.
    1. Le Grand J.N., Chakrama F.Z., Seguin-Py S., Fraichard A., Age-Mourroux R., Jouvenot M., Boyer-Guittaut M. GABARAPL1 (GEC1): original or copycat? Autophagy. 2011;7:1098–1107.
    1. Chakrama F.Z., Seguin-Py S., Le Grand J.N., Fraichard A., Age-Mourroux R., Despouy G., Perez V., Jouvenot M., Boyer-Guittaut M. GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy. 2010;6:495–505.
    1. Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7(3):279–296.
    1. Rogov V., Dötsch V., Johansen T., Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell. 2014;53(2):167–178.
    1. Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology. 2010;12(3):213–223.
    1. Fujita K., Maeda D., Xiao Q., Srinivasula S.M. Nrf2-mediated induction of p62 controls toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(4):1427–1432.
    1. Zatloukal K., Stumptner C., Fuchsbichler A., Heid H., Schnoelzer M., Kenner L., Kleinert R., Prinz M., Aguzzi A., Denk H. p62 is a common component of cytoplasmic inclusions in protein aggregation diseases. American Journal of Pathology. 2002;160(1):255–263.
    1. Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., Ueno T., Koike M., Uchiyama Y., Kominami E., Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–884.
    1. Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–889.
    1. Babu J.R., Geetha T., Wooten M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. Journal of Neurochemistry. 2005;94(1):192–203.
    1. Rea S.L., Majcher V., Searle M.S., Layfield R. SQSTM1 mutations – bridging Paget disease of bone and ALS/FTLD. Experimental Cell Research. 2014;325(1):27–37.
    1. Schreiber A., Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochimica et Biophysica Acta. 2014;1843(1):163–181.
    1. Mandell M.A., Jain A., Arko-Mensah J., Chauhan S., Kimura T., Dinkins C., Silvestri G., Münch J., Kirchhoff F., Simonsen A., Wei Y., Levine B., Johansen T., Deretic V. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Developmental Cell. 2014;30(4):394–409.
    1. Redmann M., Dodson M., Boyer-Guittaut M., Darley-Usmar V., Zhang J. Mitophagy mechanisms and role in human diseases. International Journal of Biochemistry & Cell Biology. 2014;53:127–133.
    1. Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research. 2005;8(1):3–5.
    1. Mitchell T., Chacko B., Ballinger S.W., Bailey S.M., Zhang J., Darley-Usmar V. Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochemical Society Transactions. 2013;41(1):127–133.
    1. Kim I., Lemasters J.J. Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. American Journal of Physiology—Cell Physiology. 2011;300(2):C308–C317.
    1. Twig G., Shirihai O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxidants & Redox Signaling. 2011;14(10):1939–1951.
    1. Mitchell T., Johnson M.S., Ouyang X., Chacko B.K., Mitra K., Lei X., Gai Y., Moore D.R., Barnes S., Zhang J., Koizumi A., Ramanadham S., Darley-Usmar V.M. Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived β-cells. American Journal of Physiology—Endocrinology and Metabolism. 2013;305(5):E585–E599.
    1. Higdon A.N., Benavides G.A., Chacko B.K., Ouyang X., Johnson M.S., Landar A., Zhang J., Darley-Usmar V.M. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: the protective role of autophagy. American Journal of Physiology—Heart and Circulatory Physiology. 2012;302(7):H1394–H1409.
    1. Giordano S., Dodson M., Ravi S., Redmann M., Ouyang X., Darley Usmar V.M., Zhang J. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure. Journal of Neurochemistry. 2014;131:625–633.
    1. Chu C.T., Ji J., Dagda R.K., Jiang J.F., Tyurina Y.Y., Kapralov A.A., Tyurin V.A., Yanamala N., Shrivastava I.H., Mohammadyani D., Qiang Wang K.Z., Zhu J., Klein-Seetharaman J., Balasubramanian K., Amoscato A.A., Borisenko G., Huang Z., Gusdon A.M., Cheikhi A., Steer E.K., Wang R., Baty C., Watkins S., Bahar I., Bayir H. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology. 2013;15(10):1197–1205.
    1. Gilkerson R.W., de Vries R.L., Lebot P., Wikstrom J.D., Torgyekes E., Shirihai O.S., Przedborski S., Schon E.A. Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Molecular Genetics. 2012;21(5):978–990.
    1. Allen G.F., Toth R., James J., Ganley I.G. Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Reports. 2013;14(12):1127–1135.
    1. Jin S.M., Youle R.J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy. 2013;9(11):1750–1757.
    1. McLelland G.L., Soubannier V., Chen C.X., McBride H.M., Fon E.A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO Journal. 2014;33(4):282–295.
    1. Dagda R.K., Zhu J., Kulich S.M., Chu C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy. 2008;4(6):770–782.
    1. Park S., Choi S.G., Yoo S.M., Son J.H., Jung Y.K. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy. 2014;10(11):1906–1920.
    1. Ding W.X., Li M., Biazik J.M., Morgan D.G., Guo F., Ni H.M., Goheen M., Eskelinen E.L., Yin X.M. Electron microscopic analysis of a spherical mitochondrial structure. Journal of Biological Chemistry. 2012;287(50):42373–42378.
    1. Yin X.M., Ding W.X. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy. 2013;9(11):1687–1692.
    1. Soubannier V., Rippstein P., Kaufman B.A., Shoubridge E.A., McBride H.M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLOS ONE. 2012;7(12):e52830.
    1. Jin S.M., Youle R.J. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science. 2012;125(4):795–799.
    1. Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A., Buehler E., Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E., Youle R.J. High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy. Nature. 2013;504(7479):291–295.
    1. Lefebvre V., Du Q., Baird S., Ng A.C., Nascimento M., Campanella M., McBride H.M., Screaton R.A. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy. 2013;9(11):1770–1779.
    1. Orvedahl A., Sumpter R., Jr., Xiao G., Ng A., Zou Z., Tang Y., Narimatsu M., Gilpin C., Sun Q., Roth M., Forst C.V., Wrana J.L., Zhang Y.E., Luby-Phelps K., Xavier R.J., Xie Y., Levine B. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature. 2011;480(7375):113–117.
    1. Van Humbeeck C., Cornelissen T., Hofkens H., Mandemakers W., Gevaert K., De Strooper B., Vandenberghe W. Parkin interacts with Ambra1 to induce mitophagy. Journal of Neuroscience. 2011;31(28):10249–10261.
    1. Durcan T.M., Tang M.Y., Pérusse J.R., Dashti E.A., Aguileta M.A., McLelland G.L., Gros P., Shaler T.A., Faubert D., Coulombe B., Fon E.A. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from Parkin. EMBO Journal. 2014;33:2473–2491.
    1. Bingol B., Tea J.S., Phu L., Reichelt M., Bakalarski C.E., Song Q., Foreman O., Kirkpatrick D.S., Sheng M. The mitochondrial deubiquitinase USP30 opposes Parkin-mediated mitophagy. Nature. 2014;510:370–375.
    1. Cornelissen T., Haddad D., Wauters F., Van Humbeeck C., Mandemakers W., Koentjoro B., Sue C., Gevaert K., De Strooper B., Verstreken P., Vandenberghe W. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics. 2014;23(19):5227–5242.
    1. Yu J., Nagasu H., Murakami T., Hoang H., Broderick L., Hoffman H.M., Horng T. Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(43):15514–15519.
    1. Michiorri S., Gelmetti V., Giarda E., Lombardi F., Romano F., Marongiu R., Nerini-Molteni S., Sale P., Vago R., Arena G., Torosantucci L., Cassina L., Russo M.A., Dallapiccola B., Valente E.M., Casari G. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death & Differentiation. 2010;17(6):962–974.
    1. Murata H., Sakaguchi M., Kataoka K., Huh N.H. SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria. Molecular Biology of the Cell. 2013;24(18):2772–2784.
    1. Rubinsztein D.C., Shpilka T., Elazar Z. Mechanisms of autophagosome biogenesis. Current Biology. 2012;22(1):R29–R34.
    1. Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology. 2010;12(8):747–757.
    1. Moreau K., Ravikumar B., Renna M., Puri C., Rubinsztein D.C. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011;146(2):303–317.
    1. Puri C., Renna M., Bento C.F., Moreau K., Rubinsztein D.C. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy. 2014;10(1):182–184.
    1. Matsunaga K., Morita E., Saitoh T., Akira S., Ktistakis N.T., Izumi T., Noda T., Yoshimori T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology. 2010;190(4):511–521.
    1. Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. Journal of Cell Biology. 2008;182(4):685–701.
    1. Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology. 2009;11(12):1433–1437.
    1. Itakura E., Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6(6):764–776.
    1. Molejon M.I., Ropolo A., Re A.L., Boggio V., Vaccaro M.I. The VMP1–Beclin 1 interaction regulates autophagy induction. Scientific Reports. 2013;3:1055.
    1. Ge L., Melville D., Zhang M., Schekman R. The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife. 2013;2:e00947.
    1. Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim P.K., Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141(4):656–667.
    1. Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. Autophagosomes form at ER–mitochondria contact sites. Nature. 2013;495(7441):389–393.
    1. Zhou J., Tan S.H., Nicolas V., Bauvy C., Yang N.D., Zhang J., Xue Y., Codogno P., Shen H.M. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome–lysosome fusion. Cell Research. 2013;23(4):508–523.
    1. Webb J.L., Ravikumar B., Rubinsztein D.C. Microtubule disruption inhibits autophagosome–lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. International Journal of Biochemistry & Cell Biology. 2004;36(12):2541–2550.
    1. Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., Chen Q., Chen J., Cheng H., Xiao R., Zheng M. Central role of mitofusin 2 in autophagosome–lysosome fusion in cardiomyocytes. J. Biol. Chem. 2012;287(28):23615–23625.
    1. Chen D., Fan W., Lu Y., Ding X., Chen S., Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12–Atg5 conjugate. Mol. Cell. 2012;45(5):629–641.
    1. Neely K.M., Green K.N. Presenilins mediate efficient proteolysis via the autophagosome-lysosome system. Autophagy. 2011;7(6):664–665.
    1. Zhang X.D., Qi L., Wu J.C., Qin Z.H. DRAM1 regulates autophagy flux through lysosomes. PLOS ONE. 2013;8(5):e63245.
    1. Tumbarello D.A., Waxse B.J., Arden S.D., Bright N.A., Kendrick-Jones J., Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nature Cell Biology. 2012;14(10):1024–1035.
    1. McEwan D., Popovic D., Gubas A., Terawaki S., Suzuki H., Stadel D., Coxon F., Miranda de Stegmann D., Bhogaraju S., Maddi K., Kirchof A., Gatti E., Helfrich M., Wakatsuki S., Behrends C., Pierre P., Dikic I. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Molecular Cell. 2014
    1. Ejlerskov P., Rasmussen I., Nielsen T.T., Bergström A.L., Tohyama Y., Jensen P.H., Vilhardt F. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome–lysosome fusion. Journal of Biological Chemistry. 2013;288(24):17313–17335.
    1. Lu Y., Hao B.X., Graeff R., Wong C.W., Wu W.T., Yue J. Two pore channel 2 (TPC2) inhibits autophagosomal–lysosomal fusion by alkalinizing lysosomal pH. Journal of Biological Chemistry. 2013;288(33):24247–24263.
    1. Lu Y., Dong S., Hao B., Li C., Zhu K., Guo W., Wang Q., Cheung K.H., Wong C.W., Wu W.T., Markus H., Yue J. Vacuolin-1 potently and reversibly inhibits autophagosome–lysosome fusion by activating RAB5A. Autophagy. 2014;10(11):1895–1905.
    1. Itakura E., Kishi-Itakura C., Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151(6):1256–1269.
    1. Furuta N., Fujita N., Noda T., Yoshimori T., Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Molecular Biology of the Cell. 2010;21(6):1001–1010.
    1. Jiang P., Nishimura T., Sakamaki Y., Itakura E., Hatta T., Natsume T., Mizushima N. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Molecular Biology of the Cell. 2014;25(8):1327–1337.
    1. Klionsky D.J., Abdalla F.C., Abeliovich H., Abraham R.T., Acevedo-Arozena A., Adeli K., Agholme L., Agnello M., Agostinis P., Aguirre-Ghiso J.A., Ahn H.J. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.
    1. Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal. 2000;19(21):5720–5728.
    1. Kimura S., Noda T., Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3(5):452–460.
    1. Mizushima N. Methods for monitoring autophagy using GFP-LC3 transgenic mice. Methods in Enzymology. 2009;452:13–23.
    1. Li L., Wang Z.V., Hill J.A., Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. Journal of the American Society of Nephrology. 2014;25(2):305–315.
    1. Zois C.E., Giatromanolaki A., Sivridis E., Papaiakovou M., Kainulainen H., Koukourakis M.I. “Autophagic flux” in normal mouse tissues: focus on endogenous LC3A processing. Autophagy. 2011;7(11):1371–1378.
    1. Haspel J., Shaik R.S., Ifedigbo E., Nakahira K., Dolinay T., Englert J.A., Choi A.M. Characterization of macroautophagic flux in vivo using a leupeptin-based assay. Autophagy. 2011;7(6):629–642.
    1. Eskelinen E.L., Reggiori F., Baba M., Kovács A.L., Seglen P.O. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy. 2011;7(9):935–956.
    1. Zakeri Z., Melendez A., Lockshin R.A. Detection of autophagy in cell death. Methods in Enzymology. 2008;442:289–306.
    1. Seglen P.O., Gordon P.B. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Molecular Pharmacology. 1980;18(3):468–475.
    1. Seglen P.O., Gordon P.B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochimica et Biophysica Acta. 1980;630(1):103–118.
    1. Gordon P.B., Seglen P.O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Experimental Cell Research. 1982;142(1):1–14.
    1. Seglen P.O., Gordon P.B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. Journal of Cell Biology. 1984;99(2):435–444.
    1. Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Autophagy and protein degradation in isolated rat hepatocytes. Biochemical Society Transactions. 1985;13(6):1007–1010.
    1. Seglen P.O., Gordon P.B., Tolleshaug H., Høyvik H. Pathways of intracellular sequestration and protein degradation in isolated rat hepatocytes. Progress in Clinical Biological Research. 1985;180:437–446.
    1. Rodriguez-Enriquez S., Kim I., Currin R.T., Lemasters J.J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2006;2(1):39–46.
    1. Ding W.X., Yin X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry. 2012;393(7):547–564.
    1. Chu C.T., Zhu J., Dagda R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy. 2007;3(6):663–666.
    1. Dagda R.K., Cherra S.J., III, Kulich S.M., Tandon A., Park D., Chu C.T. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. Journal of Biological Chemistry. 2009;284(20):13843–13855.
    1. Cherra S.J., III, Dagda R.K., Tandon A., Chu C.T. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy. 2009;5(8):1213–1214.
    1. Narendra D., Tanaka A., Suen D.F., Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology. 2008;183(5):795–803.
    1. Narendra D., Kane L.A., Hauser D.N., Fearnley I.M., Youle R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 2010;6:1090–1106.
    1. Narendra D.P., Jin S.M., Tanaka A., Suen D.F., Gautier C.A., Shen J., Cookson M.R., Youle R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biology. 2010;8(1)
    1. Hill B.G., Benavides G.A., Lancaster J.R., Jr., Ballinger S., Dell’Italia L., Jianhua Z., Darley-Usmar V.M. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biological Chemistry. 2012;393(12):1485–1512.
    1. Chacko B.K., Kramer P.A., Ravi S., Johnson M.S., Hardy R.W., Ballinger S.W., Darley-Usmar V.M. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Laboratory Investigation. 2013;93(6):690–700.
    1. Chacko B.K., Kramer P.A., Ravi S., Benavides G.A., Mitchell T., Dranka B.P., Ferrick D., Singal A.K., Ballinger S.W., Bailey S.M., Hardy R.W., Zhang J., Zhi D., Darley-Usmar V.M. The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clinical Science (London) 2014;127(6):367–373.
    1. Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery. 2012;11(9):709–730.
    1. Choi A.M., Ryter S.W., Levine B. Autophagy in human health and disease. New England Journal of Medicine. 2013;368(19):1845–1846.
    1. Murrow L., Debnath J. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annual Review of Pathology. 2013;8:105–137.
    1. Allison D.B., Antoine L.H., Ballinger S.W., Bamman M.M., Biga P., Darley-Usmar V.M., Fisher G., Gohlke J.M., Halade G.V., Hartman J.L., Hunter G.R., Messina J.L., Nagy T.R., Plaisance E.P., Powell M.L., Roth K.A., Sandel M.W., Schwartz T.S., Smith D.L., Sweatt J.D., Tollefsbol T.O., Watts S.A., Yang Y., Zhang J., Austad S.N. Aging and energetics’ ‘top 40’ future research opportunities 2010–2013. F1000 Research. 2014;3:219.
    1. Lavandero S., Troncoso R., Rothermel B.A., Martinet W., Sadoshima J., Hill J.A. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy. 2013;9(10):1455–1466.
    1. Ni H.M., Williams J.A., Jaeschke H., Ding W.X. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biology. 2013;1(1):427–432.
    1. Lavallard V.J., Gual P. Autophagy and non-alcoholic fatty liver disease. BioMed Research International. 2014;2014:120179.
    1. Mallat A., Lodder J., Teixeira-Clerc F., Moreau R., Codogno P., Lotersztajn S. Autophagy: a multifaceted partner in liver fibrosis. BioMed Research International. 2014;2014:869390.
    1. Lee M. Role of islet beta cell autophagy in the pathogenesis of diabetes. Trends in Endocrinology & Metabolism. 2014;25:620–627.
    1. Heath J.M., Sun Y., Yuan K., Bradley W.E., Litovsky S., Dell’Italia L.J., Chatham J.C., Wu H., Chen Y. Activation of AKT by O-Linked N-acetylglucosamine induces vascular calcification in diabetes mellitus. Circulation Research. 2014;114(7):1094–1102.
    1. Qu X., Yu J., Bhagat G., Furuya N., Hibshoosh H., Troxel A., Rosen J., Eskelinen E.L., Mizushima N., Ohsumi Y., Cattoretti G., Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation. 2003;112(12):1809–1820.
    1. Inoki K., Corradetti M.N., Guan K.L. Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics. 2005;37(1):19–24.
    1. Mariño G., Salvador-Montoliu N., Fueyo A., Knecht E., Mizushima N., López-Otín C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. Journal of Biological Chemistry. 2007;282:18573–18583.
    1. Takamura A., Komatsu M., Hara T., Sakamoto A., Kishi C., Waguri S., Eishi Y., Hino O., Tanaka K., Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes & Development. 2011;25(8):795–800.
    1. Janku F., McConkey D.J., Hong D.S., Kurzrock R. Autophagy as a target for anticancer therapy. Nature Reviews Clinical Oncology. 2011;8:528–539.
    1. Takacs-Vellai K., Vellai T., Puoti A., Passannante M., Wicky C., Streit A., Kovacs A.L., Müller F. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Current Biology. 2005;15(16):1513–1517.
    1. Juhász G., Erdi B., Sass M., Neufeld T.P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila. Genes & Development. 2007;21(23):3061–3066.
    1. Tóth M.L., Sigmond T., Borsos E., Barna J., Erdélyi P., Takács-Vellai K., Orosz L., Kovács A.L., Csikós G., Sass M., Vellai T. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy. 2008;4(3):330–338.
    1. Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–395.
    1. Bjedov I., Partridge L. A longer and healthier life with TOR down-regulation: genetics and drugs. Biochemical Society Transactions. 2011;39(2):460–465.
    1. Zhang Y., Bokov A., Gelfond J., Soto V., Ikeno Y., Hubbard G., Diaz V., Sloane L., Maslin K., Treaster S., Réndon S., van Remmen H., Ward W., Javors M., Richardson A., Austad S.N., Fischer K. Rapamycin extends life and health in C57BL/6 mice. Journals of Gerontology Series A: Biological Sciences and Medical Science. 2014;69(2):119–130.
    1. Vellai T., Takács-Vellai K., Sass M., Klionsky D.J. The regulation of aging: does autophagy underlie longevity? Trends in Cell Biology. 2009;19(10):487–494.
    1. Mai S., Muster B., Bereiter-Hahn J., Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy. 2012;8(1):47–62.
    1. Pyo J.O., Yoo S.M., Ahn H.H., Nah J., Hong S.H., Kam T.I., Jung S., Jung Y.K. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Communications. 2013;4:2300.
    1. Madeo F., Tavernarakis N., Kroemer G. Can autophagy promote longevity? Nature Cell Biology. 2010;12(9):842–846.
    1. Vellai T. Autophagy genes and ageing. Cell Death & Differentiation. 2009;16(1):94–102.
    1. Morselli E., Maiuri M.C., Markaki M., Megalou E., Pasparaki A., Palikaras K., Criollo A., Galluzzi L., Malik S.A., Vitale I., Michaud M., Madeo F., Tavernarakis N., Kroemer G. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death & Disease. 2010;1:e10.
    1. Austad S.N. Cats, “rats”, and bats: the comparative biology of aging in the 21st century. Integrative and Comparative Biology. 2010;50(5):783–792.
    1. Anglade P., Vyas S., Javoy-Agid F., Herrero M.T., Michel P.P., Marquez J., Mouatt-Prigent A., Ruberg M., Hirsch E.C., Agid Y. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histology and Histopathology. 1997;12(1):25–31.
    1. Nixon R.A. The role of autophagy in neurodegenerative disease. Nature Medicine. 2013;19(8):983–997.
    1. Pickford F., Masliah E., Britschgi M., Lucin K., Narasimhan R., Jaeger P.A., Small S., Spencer B., Rockenstein E., Levine B., Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. Journal of Clinical Investigation. 2008;118(6):2190–2199.
    1. Hochfeld W.E., Lee S., Rubinsztein D.C. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacologica Sinica. 2013;34(5):600–604.
    1. Zheng Y.T., Shahnazari S., Brech A., Lamark T., Johansen T., Brumell J.H. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. Journal of Immunology. 2009;183(9):5909–5916.
    1. Thurston T.L., Ryzhakov G., Bloor S., von Muhlinen N., Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nature Immunology. 2009;10(11):1215–1221.
    1. Wild P., Farhan H., McEwan D.G., Wagner S., Rogov V.V., Brady N.R., Richter B., Korac J., Waidmann O., Choudhary C., Dötsch V., Bumann D., Dikic I. Phosphorylation of the autophagy receptor optineurin restricts salmonella growth. Science. 2011;333(6039):228–233.
    1. Ogawa M., Yoshikawa Y., Kobayashi T., Mimuro H., Fukumatsu M., Kiga K., Piao Z., Ashida H., Yoshida M., Kakuta S., Koyama T., Goto Y., Nagatake T., Nagai S., Kiyono H., Kawalec M., Reichhart J.M., Sasakawa C. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host & Microbe. 2011;9(5):376–389.
    1. Gutierrez M.G., Master S.S., Singh S.B., Taylor G.A., Colombo M.I., Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–766.
    1. Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., Sasakawa C. Escape of intracellular Shigella from autophagy. Science. 2005;307(5710):727–731.
    1. Yoshikawa Y., Ogawa M., Hain T., Yoshida M., Fukumatsu M., Kim M., Mimuro H., Nakagawa I., Yanagawa T., Ishii T., Kakizuka A., Sztul E., Chakraborty T., Sasakawa C. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biology. 2009;11(10):1233–1240.
    1. Gutierrez M.G., Vázquez C.L., Munafó D.B., Zoppino F.C., Berón W., Rabinovitch M., Colombo M.I. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cellular Microbiology. 2005;7(7):981–993.
    1. Orvedahl A., MacPherson S., Sumpter R., Jr., Tallóczy Z., Zou Z., Levine B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host & Microbe. 2010;7(2):115–127.
    1. He C., Levine B. The Beclin 1 interactome. Current Opinion in Cell Biology. 2010;22(2):140–149.
    1. Shoji-Kawata S., Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochimica et Biophysica Acta. 2009;1793(9):1478–1484.
    1. Höhn A., Jung T., Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radical Biology and Medicine. 2014;71:70–89.
    1. Höhn T.J., Grune T. The proteasome and the degradation of oxidized proteins: Part III – Redox regulation of the proteasomal system. Redox Biology. 2014;2:388–394.
    1. Jung T., Grune T. The proteasome and the degradation of oxidized proteins: Part I – Structure of proteasomes. Redox Biology. 2013;1(1):178–182.
    1. Ngo J.K., Pomatto L.C., Davies K.J. Upregulation of the mitochondrial Lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology. 2013;1(1):258–264.

Source: PubMed

3
Sottoscrivi