Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study

Florent Besnier, Béatrice Bérubé, Jacques Malo, Christine Gagnon, Catherine-Alexandra Grégoire, Martin Juneau, François Simard, Philippe L'Allier, Anil Nigam, Josep Iglésies-Grau, Thomas Vincent, Deborah Talamonti, Emma Gabrielle Dupuy, Hânieh Mohammadi, Mathieu Gayda, Louis Bherer, Florent Besnier, Béatrice Bérubé, Jacques Malo, Christine Gagnon, Catherine-Alexandra Grégoire, Martin Juneau, François Simard, Philippe L'Allier, Anil Nigam, Josep Iglésies-Grau, Thomas Vincent, Deborah Talamonti, Emma Gabrielle Dupuy, Hânieh Mohammadi, Mathieu Gayda, Louis Bherer

Abstract

(1) Background: Cardiopulmonary and brain functions are frequently impaired after COVID-19 infection. Exercise rehabilitation could have a major impact on the healing process of patients affected by long COVID-19. (2) Methods: The COVID-Rehab study will investigate the effectiveness of an eight-week cardiopulmonary rehabilitation program on cardiorespiratory fitness (V˙O2max) in long-COVID-19 individuals. Secondary objectives will include functional capacity, quality of life, perceived stress, sleep quality (questionnaires), respiratory capacity (spirometry test), coagulation, inflammatory and oxidative-stress profile (blood draw), cognition (neuropsychological tests), neurovascular coupling and pulsatility (fNIRS). The COVID-Rehab project was a randomised clinical trial with two intervention arms (1:1 ratio) that will be blindly evaluated. It will recruit a total of 40 individuals: (1) rehabilitation: centre-based exercise-training program (eight weeks, three times per week); (2) control: individuals will have to maintain their daily habits. (3) Conclusions: Currently, there are no specific rehabilitation guidelines for long-COVID-19 patients, but preliminary studies show encouraging results. Clinicaltrials.gov (NCT05035628).

Keywords: COVID-19; cognition; exercise; long COVID; physical activity; rehabilitation; respiratory rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., Ji R., Wang H., Wang Y., Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017.
    1. Dasgupta A., Kalhan A., Kalra S. Long term complications and rehabilitation of COVID-19 patients. J. Pak. Med. Assoc. 2020;70((Suppl. 3)):S131–S135. doi: 10.5455/JPMA.32.
    1. Bellan M., Soddu D., Balbo P.E., Baricich A., Zeppegno P., Avanzi G.C., Baldon G., Bartolomei G., Battaglia M., Battistini S., et al. Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open. 2021;4:e2036142. doi: 10.1001/jamanetworkopen.2020.36142.
    1. Carfi A., Bernabei R., Landi F., Gemelli Against COVID-19 Post-Acute Care Study Group Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.
    1. ElBini Dhouib I. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neuroinvasion of SARS-CoV-2. Drug Discov. Ther. 2021;14:262–272. doi: 10.5582/ddt.2020.03106.
    1. Li J. Rehabilitation management of patients with COVID-19: Lessons learned from the first experience in China. Eur. J. Phys. Rehabil. Med. 2020;56:335–338. doi: 10.23736/S1973-9087.20.06292-9.
    1. Lerum T.V., Aaløkken T.M., Brønstad E., Aarli B., Ikdahl E., Lund K.M.A., Durheim M.T., Rodriguez J.R., Meltzer C., Tonby K., et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur. Respir. J. 2021;57:2003448. doi: 10.1183/13993003.03448-2020.
    1. Sonnweber T., Sahanic S., Pizzini A., Luger A., Schwabl C., Sonnweber B., Kurz K., Koppelstätter S., Haschka D., Petzer V., et al. Cardiopulmonary recovery after COVID-19: An observational prospective multicentre trial. Eur. Respir. J. 2021;57:2003481. doi: 10.1183/13993003.03481-2020.
    1. Clavario P., De Marzo V., Lotti R., Barbara C., Porcile A., Russo C., Beccaria F., Bonavia M., Bottaro L.C., Caltabellotta M., et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033.
    1. Spruit M.A., Singh S.J., Garvey C., ZuWallack R., Nici L., Rochester C., Hill K., Holland A.E., Lareau S.C., Man W.D., et al. An official American Thoracic Society/European Respiratory Society Statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013;188:e13–e64. doi: 10.1164/rccm.201309-1634ST.
    1. Rochester C.L., Vogiatzis I., Holland A.E., Lareau S.C., Marciniuk D.D., Puhan M.A., Spruit M.A., Masefield S., Casaburi R., Clini E.M., et al. An Official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2015;192:1373–1386. doi: 10.1164/rccm.201510-1966ST.
    1. American College of Sports Medicine. Riebe D., Ehrman J.K., Liguori G., Magal M. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Wolters Kluwer; Philadelphia, PA, USA: 2018.
    1. Liu K., Zhang W., Yang Y., Zhang J., Li Y., Chen Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 2020;39:101166. doi: 10.1016/j.ctcp.2020.101166.
    1. Shan M.X., Tran Y.M., Vu K.T., Eapen B.C. Postacute inpatient rehabilitation for COVID-19. BMJ Case Rep. 2020;13:e237406. doi: 10.1136/bcr-2020-237406.
    1. Barbara C., Clavario P., De Marzo V., Lotti R., Guglielmi G., Porcile A., Russo C., Griffo R., Mäkikallio T., Hautala A.J., et al. Effects of exercise rehabilitation in patients with long COVID-19. Eur. J. Prev. Cardiol. 2022:zwac019. doi: 10.1093/eurjpc/zwac019.
    1. Rooney S., Webster A., Paul L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome-related coronavirus infection: Implications for COVID-19 rehabilitation. Phys. Ther. 2020;100:1717–1729. doi: 10.1093/ptj/pzaa129.
    1. Barker-Davies R.M., O’Sullivan O., Senaratne K.P.P., Baker P., Cranley M., Dharm-Datta S., Ellis H., Goodall D., Gough M., Lewis S., et al. The stanford hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020;54:949–959. doi: 10.1136/bjsports-2020-102596.
    1. WHO . COVID-19 Clinical Management: Living Guidance. WHO; Geneva, Switzerland: 2021.
    1. Sun T., Guo L., Tian F., Dai T., Xing X., Zhao J., Li Q. Rehabilitation of patients with COVID-19. Expert Rev. Respir. Med. 2020;14:1249–1256. doi: 10.1080/17476348.2020.1811687.
    1. Agostini F., Mangone M., Ruiu P., Paolucci T., Santilli V., Bernetti A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021;53:jrm00141. doi: 10.2340/16501977-2776.
    1. Barrett H., DeGroute W., Denehy L., Etimadi Y., Gosslink R., Grey D., Hallowell B., Lim P., Marks E., Mishra S., et al. Rehabilitation Considerations for the COVID-19 Outbreak. Pan American Health Organization; World Health Organization; Washington, DC, USA: 2020.
    1. Steell L., Ho F.K., Sillars A., Petermann-Rocha F., Li H., Lyall D.M., Iliodromiti S., Welsh P., Anderson J., MacKay D.F., et al. Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: The UK Biobank cohort study. Br. J. Sports Med. 2019;53:1371–1378. doi: 10.1136/bjsports-2018-099093.
    1. Radtke T., Crook S., Kaltsakas G., Louvaris Z., Berton D., Urquhart D.S., Kampouras A., Rabinovich R.A., Verges S., Kontopidis D., et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. Eur. Respir. Rev. 2019;28:180101. doi: 10.1183/16000617.0101-2018.
    1. Ahmed I. COVID-19—Does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin. Med. 2020;20:282–284. doi: 10.7861/clinmed.2020-0111.
    1. Cothran T.P., Kellman S., Singh S., Beck J.S., Powell K.J., Bolton C.J., Tam J.W. A brewing storm: The neuropsychological sequelae of hyperinflammation due to COVID-19. Brain Behav. Immun. 2020;88:957–958. doi: 10.1016/j.bbi.2020.06.008.
    1. Mesquita R., Wilke S., Smid D.E., Janssen D.J., Franssen F.M., Probst V.S., Wouters E.F., Muris J.W., Pitta F., Spruit M.A. Measurement properties of the Timed Up & Go test in patients with COPD. Chron. Respir. Dis. 2016;13:344–352.
    1. Bohannon R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006;103:215–222. doi: 10.2466/pms.103.1.215-222.
    1. Jones S.E., Kon S.S., Canavan J.L., Patel M.S., Clark A.L., Nolan C.M., Polkey M.I., Man W.D. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68:1015–1020. doi: 10.1136/thoraxjnl-2013-203576.
    1. WHO . Global COVID-19 Clinical Platform Case Report Form (CRF) for Post COVID Condition (Post COVID-19 CRF) WHO; Geneva, Switzerland: 2020.
    1. Tran V.T., Riveros C., Clepier B., Desvarieux M., Collet C., Yordanov Y., Ravaud P. Development and validation of the long COVID symptom and impact tools, a set of patient-reported instruments constructed from patients’ lived experience. medRxiv. 2021 doi: 10.1101/2021.03.18.21253903.
    1. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I., Cummings J.L., Chertkow H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. McComb E., Tuokko H., Brewster P., Chou P.H., Kolitz K., Crossley M., Simard M. Mental alternation test: Administration mode, age, and practice effects. J. Clin. Exp. Neuropsychol. 2011;33:234–241. doi: 10.1080/13803395.2010.509916.
    1. Pendlebury S.T., Welch S.J., Cuthbertson F.C., Mariz J., Mehta Z., Rothwell P.M. Telephone assessment of cognition after transient ischemic attack and stroke: Modified telephone interview of cognitive status and telephone Montreal Cognitive Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological battery. Stroke. 2013;44:227–229. doi: 10.1161/STROKEAHA.112.673384.
    1. Lezak M.D. Neuropsychological Assessment. Oxford University Press; Oxford, UK: 2012.
    1. Gearhart R.F., Jr., Lagally K.M., Riechman S.E., Andrews R.D., Robertson R.J. Strength tracking using the OMNI resistance exercise scale in older men and women. J. Strength Cond. Res. 2009;23:1011–1015. doi: 10.1519/JSC.0b013e3181a2ec41.
    1. Baratto C., Caravita S., Faini A., Perego G.B., Senni M., Badano L.P., Parati G. Impact of COVID-19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. J. Appl. Physiol. 2021;130:1470–1478. doi: 10.1152/japplphysiol.00710.2020.
    1. Rinaldo R.F., Mondoni M., Parazzini E.M., Pitari F., Brambilla E., Luraschi S., Balbi M., Sferrazza Papa G.F., Sotgiu G., Guazzi M., et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021;58:2100870. doi: 10.1183/13993003.00870-2021.
    1. Singh I., Joseph P., Heerdt P.M., Cullinan M., Lutchmansingh D.D., Gulati M., Possick J.D., Systrom D.M., Waxman A.B. Persistent exertional intolerance after COVID-19: Insights from invasive cardiopulmonary exercise testing. Chest. 2021;161:54–63. doi: 10.1016/j.chest.2021.08.010.
    1. Skjorten I., Ankerstjerne O.A.W., Trebinjac D., Brønstad E., Rasch-Halvorsen Ø., Einvik G., Lerum T.V., Stavem K., Edvardsen A., Ingul C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021;58:2100996. doi: 10.1183/13993003.00996-2021.
    1. Pecanha T., Goessler K.F., Roschel H., Gualano B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2020;318:H1441–H1446. doi: 10.1152/ajpheart.00268.2020.
    1. Wang T.J., Chau B., Lui M., Lam G.T., Lin N., Humbert S. Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am. J. Phys. Med. Rehabil. 2020;99:769–774. doi: 10.1097/PHM.0000000000001505.
    1. Davis H.E., Assaf G.S., McCorkell L., Wei H., Low R.J., Re’em Y., Redfield S., Austin J.P., Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019.
    1. Gu R., Xu S., Li Z., Gu Y., Sun Z. The safety and effectiveness of rehabilitation exercises on COVID-19 patients: A protocol for systematic review and meta-analysis. Medicine. 2020;99:e21373. doi: 10.1097/MD.0000000000021373.
    1. Yan H., Ouyang Y., Wang L., Luo X., Zhan Q. Effect of respiratory rehabilitation training on elderly patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine. 2020;99:e22109. doi: 10.1097/MD.0000000000022109.
    1. Siddiq M.A.B., Rathore F.A., Clegg D., Rasker J.J. Pulmonary Rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 2020;66:480–494. doi: 10.5606/tftrd.2020.6889.

Source: PubMed

3
Sottoscrivi