The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance

Justin D Roberts, Michael G Roberts, Michael D Tarpey, Jack C Weekes, Clare H Thomas, Justin D Roberts, Michael G Roberts, Michael D Tarpey, Jack C Weekes, Clare H Thomas

Abstract

Background: The cardio-metabolic and antioxidant health benefits of caffeinated green tea (GT) relate to its catechin polyphenol content. Less is known about decaffeinated extracts, particularly in combination with exercise. The aim of this study was therefore to determine whether a decaffeinated green tea extract (dGTE) positively influenced fat oxidation, body composition and exercise performance in recreationally active participants.

Methods: Fourteen, recreationally active males participated in a double-blind, placebo-controlled, parallel design intervention (mean ± SE; age = 21.4 ± 0.3 yrs; weight = 76.37 ± 1.73 kg; body fat = 16.84 ± 0.97%, peak oxygen consumption [[Formula: see text]] = 3.00 ± 0.10 L·min(-1)). Participants were randomly assigned capsulated dGTE (571 mg·d(-1); n = 7) or placebo (PL; n = 7) for 4 weeks. Following body composition and resting cardiovascular measures, participants cycled for 1 hour at 50% [Formula: see text], followed by a 40 minute performance trial at week 0, 2 and 4. Fat and carbohydrate oxidation was assessed via indirect calorimetry. Pre-post exercise blood samples were collected for determination of total fatty acids (TFA). Distance covered (km) and average power output (W) were assessed as exercise performance criteria.

Results: Total fat oxidation rates increased by 24.9% from 0.241 ± 0.025 to 0.301 ± 0.009 g·min(-1) with dGTE (P = 0.05; ηp(2) = 0.45) by week 4, whereas substrate utilisation was unaltered with PL. Body fat significantly decreased with dGTE by 1.63 ± 0.16% in contrast to PL over the intervention period (P < 0.001; ηp(2) = 0.84). No significant changes for FFA or blood pressure between groups were observed. dGTE resulted in a 10.9% improvement in performance distance covered from 20.23 ± 0.54 km to 22.43 ± 0.40 km by week 4 (P < 0.001; ηp(2) = 0.85).

Conclusions: A 4 week dGTE intervention favourably enhanced substrate utilisation and subsequent performance indices, but did not alter TFA concentrations in comparison to PL. The results support the use of catechin polyphenols from dGTE in combination with exercise training in recreationally active volunteers.

Keywords: Body composition; Exercise performance; Fat oxidation; Green tea.

Figures

Figure 1
Figure 1
Weekly contribution of substrate to total energy expenditure (EE) for the PL group. Figure 1 shows the contribution of both fat and carbohydrate (based on oxidation rates) to energy expenditure during submaximal exercise for the placebo condition. Data are presented as mean ± SE. PL, Placebo; FAT, average fat oxidation rates; CHO, average carbohydrate oxidation rates. No significant differences were found with ANOVA (P > 0.05).
Figure 2
Figure 2
Weekly contribution of substrate to total energy expenditure (EE) for the dGTE group. Figure 2 shows the contribution of both fat and carbohydrate (based on oxidation rates) to energy expenditure during submaximal exercise for the dGTE condition. Data are presented as mean ± SE. dGTE, decaffeinated green tea extract; FAT, average fat oxidation rates; CHO, average carbohydrate oxidation rates. Adenotes significant overall group × time interaction effect compared with PL (Figure 1; P = 0.05). Bdenotes significant overall time interaction effect in conjunction with PL (Figure 1; P ≤ 0.03). 1 denotes significant interaction over time within GTE only (P ≤ 0.05).
Figure 3
Figure 3
Total fatty acid concentrations pre and post exercise. Figure 3 shows the absolute total fatty acid concentrations at rest and post exercise for both treatment conditions at week 0 and week 4. Data are presented as mean ± SE. PL, Placebo; dGTE, decaffeinated green tea extract. No significant differences were found with ANOVA (P > 0.05).
Figure 4
Figure 4
Distance covered and average power output during the performance trial. Figure 4 shows the distance covered and average power output elicited during the 40 minute performance trial for both treatment conditions at week 0, 2 and 4 of the intervention. Data are presented as mean ± SE. PL, Placebo; dGTE, decaffeinated green tea extract. Adenotes significant overall group × time interaction effect (P ≤ 0.001). Bdenotes significant overall time interaction effect (P < 0.001). 1denotes significant within group time interaction effect only (P = 0.039). *denotes significant difference (P ≤ 0.02) to baseline only within group. #denotes significant difference to week 2 within group only (P = 0.03).

References

    1. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70:1040–50.
    1. Ryu OH, Lee J, Lee KW, Kim HY, Seo JA, Kim SG, et al. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Res Clin Pract. 2006;71:356–8. doi: 10.1016/j.diabres.2005.08.001.
    1. Venables MC, Hulston CJ, Cox HR, Jeukendrup AE. Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. Am J Clin Nutr. 2008;87:778–84.
    1. Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr. 2000;71(6):1698S–702.
    1. Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, et al. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr. 2009;139(2):264–70. doi: 10.3945/jn.108.098293.
    1. Moore RJ, Jackson KG, Minihane AM. Green tea (Camellia Sinensis) catechins and vascular function. Br J Nutr. 2009;102(12):1790–802. doi: 10.1017/S0007114509991218.
    1. Nantz MP, Rowe CA, Bukowski JF, Percival SS. Standardised capsule of Camellia sinensis lowers cardiovascular risk factors in a randomized, double-blind, placebo-controlled study. Nutr. 2009;25(2):147–54. doi: 10.1016/j.nut.2008.07.018.
    1. Valcic S, Burr JA, Timmermann BN, Liebler TC. Antioxidant chemistry of green tea catechins. New oxidation products of (−)-epigallocatechin gallate and (−)-epigallocatechin from their reactions with peroxyl radicals. Chem Res Toxicol. 2000;13(9):801–10. doi: 10.1021/tx000080k.
    1. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H, et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr. 2004;80:1558–64.
    1. Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity. 2007;15(6):1473–83. doi: 10.1038/oby.2007.176.
    1. Ichinose T, Nomura S, Someya Y, Akimoto S, Tachiyashiki K, Imaizumi K. Endurance training supplemented with green tea extract on substrate metabolism during exercise in humans. Scand J Med Sci Sports. 2011;21:598–605. doi: 10.1111/j.1600-0838.2009.01077.x.
    1. Galleano M, Pechanova O, Fraga CG. Hypertension, nitric oxide, and dietary plant polyphenols. Curr Pharm Biotech. 2010;11(8):837–48. doi: 10.2174/138920110793262114.
    1. Brown AL, Lane J, Coverly J, Stocks J, Jackson S, Stephen A, et al. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: a randomised control trial. Br J Nutr. 2009;101(6):886–94. doi: 10.1017/S0007114508047727.
    1. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–7. doi: 10.1016/j.jnutbio.2010.06.006.
    1. Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI. Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr. 2010;91(1):73–81. doi: 10.3945/ajcn.2009.28157.
    1. Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: A meta-analysis. Int J Obes. 2009;33(9):956–61. doi: 10.1038/ijo.2009.135.
    1. Hursel R, Westerterp-Plantenga MS. Thermogenic ingredients and body weight regulation. Int J Obes. 2010;34(4):659–69. doi: 10.1038/ijo.2009.299.
    1. Feng WY. Metabolism of green tea catechins: An overview. Curr Drug Metab. 2006;7(7):755–809. doi: 10.2174/138920006778520552.
    1. Chen C, Wang CY, Lambert JD, Ali N, Welsh WJ, Yang CS. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modelling studies. Biochem Pharma. 2005;69(10):1523–31. doi: 10.1016/j.bcp.2005.01.024.
    1. Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: Evidence of efficacy and proposed mechanisms. Adv Nutr. 2013;4:129–40. doi: 10.3945/an.112.003269.
    1. Reiter CEN, Kim JA, Kwon MJ. Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: Roles for AMP activated protein kinase, Akt and FOXO1. Endocrinol. 2009;151(1):103–14. doi: 10.1210/en.2009-0997.
    1. Dean S, Braakhuis A, Paton C. The effects of EGCG on fat oxidation and endurance performance in male cyclists. Int J Sport Nutr Exerc Metab. 2009;20(6):624–44.
    1. Eichenberger P, Colombani PC, Mettler S. Effects of a 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. Int J Vitam Nutr Res. 2009;79(1):24–33. doi: 10.1024/0300-9831.79.1.24.
    1. Eichenberger P, Mettler S, Arnold M, Colombani PC. No effects of three-week consumption of a green tea extract on time trial performance in endurance trained men. Int J Vitam Nutr Res. 2010;80(1):54–64. doi: 10.1024/0300-9831/a000006.
    1. Randell RK, Hodgson AB, Lotito SB, Jacobs DM, Rowson M, Mela DJ. Variable duration of decaffeinated green tea extract ingestion on exercise metabolism. Med Sci Sports Exerc. 2014;46(6):1185–93. doi: 10.1249/MSS.0000000000000205.
    1. Faul F, Erdfelder E, Lang A-G, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Meth. 2007;39(2):175–91. doi: 10.3758/BF03193146.
    1. Roberts JD, Tarpey MD, Kass LS, Tarpey RJ, Roberts MG. Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 2014;11(8):1–14.
    1. Kao M-F, Lu H-K, Jang T-R, Yang W-C, Chen C-H, Chen Y-Y, et al. Comparison of different measurement equations for body composition estimation in male athletes. Int J Sport Exerc Sci. 2010;3(1):11–6.
    1. Borg G. Ratings of perceived exertion and heart rates during short term cycle exercise and their use in a new strength test. Int J Sports Med. 1982;3(3):153–8. doi: 10.1055/s-2008-1026080.
    1. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(1):S28–37. doi: 10.1055/s-2004-830512.
    1. Kangani CO, Kelley DE, DeLany JP. New method for GC/FID and GC-C-IRMS analysis of plasma free fatty acid concentration and isotopic enrichment. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;873(1):95–101. doi: 10.1016/j.jchromb.2008.08.009.
    1. Westerterp-Plantenga MS, Lejeune MPGM, Kovacs EMR. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res. 2005;13:1195–204. doi: 10.1038/oby.2005.142.
    1. Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res. 2014;58:22–32. doi: 10.1002/mnfr.201300195.
    1. Kim H-S, Quon MJ, Kim J-A. New insights into the mechanisms of polyphenols beyond antioxidant properties: lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95. doi: 10.1016/j.redox.2013.12.022.
    1. Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, et al. Effects of catechin enriched green tea on body composition. Obesity. 2010;18:773–9. doi: 10.1038/oby.2009.256.
    1. Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Calorie restriction mimetics: towards a molecular definition. Nat Rev: Drug Disc. 2014;13(10):727–40.
    1. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007;292:E1378–87. doi: 10.1152/ajpendo.00698.2006.
    1. Murase T, Haramizu S, Shimotoyodome A, Tokimitsu I, Hase T. Green tea improves running endurance in mice by stimulating lipid utilization during exercise. Am J Physiol Reg Integr Comp Physiol. 2006;290(6):R1550–6. doi: 10.1152/ajpregu.00752.2005.
    1. MacRae HSH, Mefferd KM. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exer Metab. 2006;16(4):405–19.
    1. Richards JC, Lonac MC, Johnson TK, Schweder MM, Bell C. Epigallocatechin-3-gallate increases maximal oxygen consumption in adult humans. Med Sci Sports Exerc. 2010;42(4):739–44. doi: 10.1249/MSS.0b013e3181bcab6c.
    1. Nieman DC, Gillitt ND, Knab AM, Shanely RA, Pappan KL, Jin F, et al. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: a randomized trial using a metabolomics approach. Plos One. 2013;8(8):1–11. doi: 10.1371/journal.pone.0072215.
    1. Moradpourian MR, Ashkavand Z, Venkatesh C, Vishwanath BS. Effect of different doses of green tea on oxidative stress and muscle soreness in downhill treadmill running. Asian J Pharm Clin Res. 2014;7(2):192–3.
    1. Cunha CA, Lira FS, Neto JCR, Pimentel GD, Souza GIH, da Silva CMG, et al. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet. Mediators Inflamm. 2013;2013:1–8. doi: 10.1155/2013/635470.

Source: PubMed

3
Sottoscrivi