Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients

John S Bradley, Jon Armstrong, Antonio Arrieta, Raafat Bishai, Shampa Das, Shirley Delair, Timi Edeki, William C Holmes, Jianguo Li, Kathryn S Moffett, Deepa Mukundan, Norma Perez, José R Romero, David Speicher, Janice E Sullivan, Diansong Zhou, John S Bradley, Jon Armstrong, Antonio Arrieta, Raafat Bishai, Shampa Das, Shirley Delair, Timi Edeki, William C Holmes, Jianguo Li, Kathryn S Moffett, Deepa Mukundan, Norma Perez, José R Romero, David Speicher, Janice E Sullivan, Diansong Zhou

Abstract

This study aimed to investigate the pharmacokinetics (PK), safety, and tolerability of a single dose of ceftazidime-avibactam in pediatric patients. A phase I, multicenter, open-label PK study was conducted in pediatric patients hospitalized with an infection and receiving systemic antibiotic therapy. Patients were enrolled into four age cohorts (cohort 1, ≥12 to <18 years; cohort 2, ≥6 to <12 years; cohort 3, ≥2 to <6 years; cohort 4, ≥3 months to <2 years). Patients received a single 2-h intravenous infusion of ceftazidime-avibactam (cohort 1, 2,000 to 500 mg; cohort 2, 2,000 to 500 mg [≥40 kg] or 50 to 12.5 mg/kg [<40 kg]; cohorts 3 and 4, 50 to 12.5 mg/kg). Blood samples were collected to describe individual PK characteristics for ceftazidime and avibactam. Population PK modeling was used to describe characteristics of ceftazidime and avibactam PK across all age groups. Safety and tolerability were assessed. Thirty-two patients received study drug. Mean plasma concentration-time curves, geometric mean maximum concentration (Cmax), and area under the concentration-time curve from time zero to infinity (AUC0-∞) were similar across all cohorts for both drugs. Six patients (18.8%) reported an adverse event, all mild or moderate in intensity. No deaths or serious adverse events occurred. The single-dose PK of ceftazidime and avibactam were comparable between each of the 4 age cohorts investigated and were broadly similar to those previously observed in adults. No new safety concerns were identified. (This study has been registered at ClinicalTrials.gov under registration no. NCT01893346.).

Copyright © 2016 Bradley et al.

Figures

FIG 1
FIG 1
Arithmetic mean (±SD) plasma concentration-time curves for ceftazidime for cohorts 1 to 4 following single-dose (day 1) administration of ceftazidime-avibactam (pharmacokinetic analysis population).
FIG 2
FIG 2
Arithmetic mean (±SD) plasma concentration-time curves for avibactam for cohorts 1 to 4 following single-dose (day 1) administration of ceftazidime-avibactam (pharmacokinetic analysis population).

References

    1. Poole K. 2011. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65.
    1. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D. 2012. Ready for a world without antibiotics? The Pensieres antibiotic resistance call to action. Antimicrob Resist Infect Control 1:11. doi:10.1186/2047-2994-1-11.
    1. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51.
    1. Tangden T, Giske CG. 2015. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med 277:501–512. doi:10.1111/joim.12342.
    1. Stillwell T, Green M, Barbadora K, Ferrelli JG, Roberts TL, Weissman SJ, Nowalk A. 2015. Outbreak of KPC-3 producing carbapenem-resistant Klebsiella pneumoniae in a US pediatric hospital. J Pediatric Infect Dis Soc 4:330–338. doi:10.1093/jpids/piu080.
    1. Logan LK, Braykov NP, Weinstein RA, Laxminarayan R, CDC Epicenters Prevention Program. 2014. Extended-spectrum ß-lactamase-producing and third-generation cephalosporin-resistant Enterobacteriaceae in children: trends in the United States, 1999-2011. J Pediatr Infect Dis 3:320–328. doi:10.1093/jpids/piu010.
    1. Pannaraj PS, Bard JD, Cerini C, Weissman SJ. 2015. Pediatric carbapenem-resistant Enterobacteriaceae in Los Angeles, California, a high-prevalence region in the United States. Pediatr Infect Dis J 34:11–16. doi:10.1097/INF.0000000000000471.
    1. Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Canton R, Baquero F. 2010. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother 54:3043–3046. doi:10.1128/AAC.00265-10.
    1. Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. doi:10.3201/eid1710.110655.
    1. Lynch JP III, Clark NM, Zhanel GG. 2013. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother 14:199–210. doi:10.1517/14656566.2013.763030.
    1. Temkin E, Adler A, Lerner A, Carmeli Y. 2014. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 1323:22–42. doi:10.1111/nyas.12537.
    1. Drekonja DM, Beekmann SE, Elliott S, Mukundan D, Polenakovik H, Rosenthal ME, Tamma PD, Polgreen PM, Weissman SJ. 2014. Challenges in the management of infections due to carbapenem-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol 35:437–439. doi:10.1086/675604.
    1. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. 2003. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167. doi:10.1056/NEJMra035092.
    1. Ferro A. 2015. Paediatric prescribing: why children are not small adults. Br J Clin Pharmacol 79:351–353. doi:10.1111/bcp.12540.
    1. Ginsberg G, Hattis D, Miller R, Sonawane B. 2004. Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics 113:973–983.
    1. Covis Pharmaceuticals Inc. 2014. Fortaz (ceftazidine for injection) US prescribing information. Covis Pharmaceuticals Inc., Cary, NC: .
    1. Bonnet R. 2004. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14. doi:10.1128/AAC.48.1.1-14.2004.
    1. Vazquez JA, Gonzalez Patzan LD, Stricklin D, Duttaroy DD, Kreidly Z, Lipka J, Sable C. 2012. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin 28:1921–1931. doi:10.1185/03007995.2012.748653.
    1. Lucasti C, Popescu I, Ramesh MK, Lipka J, Sable C. 2013. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, phase II trial. J Antimicrob Chemother 68:1183–1192. doi:10.1093/jac/dks523.
    1. Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. 2015. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of beta-lactamase-producing strains. Antimicrob Agents Chemother 59:3509–3517. doi:10.1128/AAC.00163-15.
    1. Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. 2015. Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int J Antimicrob Agents 46:53–59. doi:10.1016/j.ijantimicag.2015.02.022.
    1. Lagace-Wiens P, Walkty A, Karlowsky JA. 2014. Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid 9:13–25.
    1. Allergan. 2016. AVYCAZ prescribing information, updated June 2016. .
    1. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, Gasink LB. 2016. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis 16:661–673. doi:10.1016/S1473-3099(16)30004-4.
    1. Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, Llorens L, Newell P, Pachl J. 2016. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis 62:1380–1389. doi:10.1093/cid/ciw133.
    1. Bradley J, Armstrong J, Bishai R, Das S, Holmes WC, Li J, Zhou D, Edeki T. 2015. Single-dose pharmacokinetics (PK) of ceftazidime-avibactam (CAZ-AVI) in hospitalized pediatric patients, abstr 2489. Abstr 55th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DC.
    1. Craig WA, Ebert SC. 1992. Continuous infusion of beta-lactam antibiotics. Antimicrob Agents Chemother 36:2577–2583. doi:10.1128/AAC.36.12.2577.
    1. Turnidge JD. 1998. The pharmacodynamics of beta-lactams. Clin Infect Dis 27:10–22. doi:10.1086/514622.
    1. Li J, Knebel W, Riggs M, Zhou D, Nichols W, Das S. 2012. Population pharmacokinetic modeling of ceftazidime (CAZ) and avibactam (AVI) in healthy volunteers and patients with complicated intra-abdominal infection (cIAI), abstr A-634. Abstr 52nd Intersci Conf Antimicrob Agents Chemother.
    1. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH. 2009. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24:67–76. doi:10.1007/s00467-008-0997-5.
    1. Andes D, Craig WA. 2005. Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11(Suppl 6):S10–S17.
    1. DeRyke CA, Nicolau DP. 2007. Is all free time above the minimum inhibitory concentration the same: implications for beta-lactam in vivo modelling. Int J Antimicrob Agents 29:341–343. doi:10.1016/j.ijantimicag.2006.10.006.
    1. Flamm RK, Stone GG, Sader HS, Jones RN, Nichols WW. 2014. Avibactam reverts the ceftazidime MIC90 of European Gram-negative bacterial clinical isolates to the epidemiological cut-off value. J Chemother 26:333–338. doi:10.1179/1973947813Y.0000000145.
    1. Karlowsky JA, Biedenbach DJ, Kazmierczak KM, Stone GG, Sahm DF. 2016. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC beta-lactamase-producing Enterobacteriaceae collected in the INFORM global surveillance study from 2012 to 2014. Antimicrob Agents Chemother 60:2849–2857. doi:10.1128/AAC.02286-15.
    1. Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS. 2016. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob Agents Chemother 60:2537–2541.
    1. Levasseur P, Girard AM, Claudon M, Goossens H, Black MT, Coleman K, Miossec C. 2012. In vitro antibacterial activity of the ceftazidime-avibactam (NXL104) combination against Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 56:1606–1608. doi:10.1128/AAC.06064-11.
    1. Walkty A, DeCorby M, Lagace-Wiens PR, Karlowsky JA, Hoban DJ, Zhanel GG. 2011. In vitro activity of ceftazidime combined with NXL104 versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals (CANWARD 2009 study). Antimicrob Agents Chemother 55:2992–2994. doi:10.1128/AAC.01696-10.
    1. Berkhout J, Melchers MJ, van Mil AC, Seyedmousavi S, Lagarde CM, Schuck VJ, Nichols WW, Mouton JW. 2016. Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob Agents Chemother 60:368–375. doi:10.1128/AAC.01269-15.
    1. Coleman K, Levasseur P, Girard AM, Borgonovi M, Miossec C, Merdjan H, Drusano G, Shlaes D, Nichols WW. 2014. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob Agents Chemother 58:3366–3372. doi:10.1128/AAC.00080-14.
    1. Li J, Zhou D, Al Huniti N, Bouchillon S, Bradford P, Nichols WW, Learoyd M. 2014. Pharmacokinetic/pharmacodynamic target attainment (PTA) and cumulative fractions of response (CFR) for ceftazidime, ceftazidime-avibactam, and meropenem against bacteria isolated from patients in Europe in 2012, abstr P1747A. Abstr 24th Eur Cong Clin Microbiol Infect Dis.
    1. Li J, Nichols WW, Zhou D, Das S. 2015. Population pharmacokinetic modeling of ceftazidime and avibactam and probability of target attainment to support the dosing regimen in patients with nosocomial pneumonia including ventilator-associated pneumonia, abstr P1289. Abstr 25th Eur Cong Clin Microbiol Infect Dis.
    1. Li J, Zhou D, Das S, Lovern MR, Wada R, Bellanti F, Riccobene TA, Carrothers T, Al Huniti N. 2015. Population PK modeling and dosing evaluations for ceftazidime-avibactam (CAZ-AVI) in children aged ≥3 months to <18 years receiving systemic antibiotic therapy for suspected or confirmed infection, abstr 671. Abstr Am Assoc Pharm Sci Annu Meet Exposition.
    1. Sillen H, Mitchell R, Sleigh R, Mainwaring G, Catton K, Houghton R, Glendining K. 2015. Determination of avibactam and ceftazidime in human plasma samples by LC-MS. Bioanalysis 7:1423–1434. doi:10.4155/bio.15.76.
    1. Das S, Li J, Armstrong J, Learoyd M, Edeki T. 2015. Randomized pharmacokinetic and drug-drug interaction studies of ceftazidime, avibactam, and metronidazole in healthy subjects. Pharmacol Res Perspect 3:e00172. doi:10.1002/prp2.172.

Source: PubMed

3
Sottoscrivi