SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes

Philippe Blache, Marc van de Wetering, Isabelle Duluc, Claire Domon, Philippe Berta, Jean-Noël Freund, Hans Clevers, Philippe Jay, Philippe Blache, Marc van de Wetering, Isabelle Duluc, Claire Domon, Philippe Berta, Jean-Noël Freund, Hans Clevers, Philippe Jay

Abstract

TCF and SOX proteins belong to the high mobility group box transcription factor family. Whereas TCFs, the transcriptional effectors of the Wnt pathway, have been widely implicated in the development, homeostasis and disease of the intestine epithelium, little is known about the function of the SOX proteins in this tissue. Here, we identified SOX9 in a SOX expression screening in the mouse fetal intestine. We report that the SOX9 protein is expressed in the intestinal epithelium in a pattern characteristic of Wnt targets. We provide in vitro and in vivo evidence that a bipartite beta-catenin/TCF4 transcription factor, the effector of the Wnt signaling pathway, is required for SOX9 expression in epithelial cells. Finally, in colon epithelium-derived cells, SOX9 transcriptionally represses the CDX2 and MUC2 genes, normally expressed in the mature villus cells of the intestinal epithelium, and may therefore contribute to the Wnt-dependent maintenance of a progenitor cell phenotype.

Figures

Figure 1.
Figure 1.
SOX9 is expressed in the proliferative compartment of the epithelium. (a) Western blot with mouse tissue samples representative of the overall length of the intestine (5 μg protein/lane). Antibodies used are indicated. (b) Immunohistochemistry with neonate and adult intestine samples. In the neonate mouse, the architecture of the intestine is not complete, crypts are not formed and the proliferative, Ki-67 positive, compartment is restricted to the intervillus region (top). In the adult small intestine, crypts are invaginated between the villi in the underlying mesenchyme (middle). In the adult colon, crypts contain more cells, villi are absent and the differentiated compartment constitutes the flat luminal surface of the epithelium. Cells constituting the proliferative compartment are positive for both SOX9 and Ki-67 (arrows). Arrowheads point at Paneth cells, positive for SOX9 and negative for Ki-67. Bars: (b–e) 50 μm; (f and g) 40 μm.
Figure 2.
Figure 2.
SOX9 is expressed in various colon carcinoma cell lines. (a) Western blot with cell extracts from a panel of human colon carcinoma cell lines (1 μg/lane) and the nonintestinal epithelial cell line HEK293. Endogenous SOX9 protein was detected in all colon carcinoma–derived cell lines but not in HEK293. HEK293 cells, transiently transfected with SOX9, were used as a positive control. (b–d). Immunohistochemistry with sections of human colon. (b) SOX9 staining in healthy colon epithelium; (c) SOX9 staining in adenocarcinomatous colon; (d) β-catenin staining in adenocarcinomatous colon. Arrows point at cells expressing the indicated proteins. Bars: (b) 50 μm; (c and d) 80 μm.
Figure 3.
Figure 3.
The Wnt–β-catenin–Tcf pathway is required for SOX9 expression in colon epithelial cells. (a–l) Immunofluorescence in transiently transfected LS174T colon carcinoma cells, fixed 36 h after transfection. (a–d) Hoechst nuclear staining. (e) GFP. (f) Detection of exogenous Myc-tagged ΔNTCF4 in transfected cells with an anti-Myc antibody. (g and h) GFP shows the perinuclear accumulation of the GFP–cyt-E-cadherin fusion in transfected cells. (i) Identical SOX9 staining in GFP-transfected and nontransfected cells. (j and l) SOX9 staining is absent in cells transfected with the Wnt pathway interfering constructs ΔNTCF4 and GFP–cyt-E-cadherin. (k) β-Catenin is efficiently sequestered by GFP–cyt-E-cadherin, as shown by their identical distribution in transfected cells. The type of staining is indicated on each panel. (m) Northern blot. SOX9 mRNA detection in LS174T colon carcinoma cells stably transfected with an inducible ΔNTCF4 construct. Time of doxycyclin induction is indicated for both the control and the ΔNTCF4 expressing cell line. A GAPDH probe was used as a loading control. (n) Phosphorimager quantification of the Northern blot signals. (o) Western blot. Detection of the SOX9 protein in the ΔNTCF4 stably transfected LS174T cells with or without doxycycline induction. Bar, 15 μm.
Figure 4.
Figure 4.
Absence of the SOX9 protein in the proliferative compartment of TCF4-deficient neonate mouse. (a and b) TCF4 heterozygous mice are healthy and fertile. The actively proliferating intervillus cells are Ki-67 positive and express abundant nuclear SOX9 protein (arrows). (c and d) In TCF4 null mice, no Ki-67 positive proliferating cells can be found in the intervillus region (arrowheads), and SOX9 expression is completely abrogated. Bar, 5 μm.
Figure 5.
Figure 5.
SOX9 represses intestine epithelium differentiation genes. LS174T cells were transiently transfected with GFP, Flag-SOX9 fusion, Flag-SOX9 antisense, or Flag-COOH–truncated SOX9 (ΔC-Sox9) constructs, and the expression of the indicated putative target genes was monitored by RT-PCR. The primers used are listed in Table S1.
Figure 6.
Figure 6.
SOX9 negatively regulates the promoters of the CDX2 and MUC2 genes. LS174T cells were cotransfected, in triplicate, with the indicated expression constructs (10 and 100 ng) together with CDX2-luciferase, MUC2-luciferase and SOX-luciferase reporters (500 ng) and relative luciferase activities were measured 36 h after transfection. The reporter activity in mock-transfected cells was arbitrarily set to 100. (a) CDX2 and MUC2 promoters regulation by SOX9; (b–d) SOX9-VP16 recapitulates the transcription regulation properties of the wild-type SOX9 on SOX-luciferase (b), CDX2-luciferase (c), and MUC2-luciferase constructs (d). The histograms represent mean values of triplicate experiments and SDs are shown with error bars.
Figure 7.
Figure 7.
SOX9 represses CDX2 and MUC2 in xenograft-derived tumors. Sections from tumors resulting from xenografts of HT29-16E-SOX9 cells, stained with antibodies against the Flag tag, the CDX2 and MUC2 proteins. Antibodies used for staining are indicated. The expression of the Flag-SOX9 construct is detected uniquely in the nucleus of tumors from doxycycline-fed mice. Bar, 130 μm.

References

    1. Akiyama, H., M.C. Chaboissier, J.F. Martin, A. Schedl, and B. de Crombrugghe. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16:2813–2828.
    1. Aoki, K., Y. Tamai, S. Horiike, M. Oshima, and M.M. Taketo. 2003. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716 Cdx2+/− compound mutant mice. Nat. Genet. 35:323–330.
    1. Avilion, A.A., S.K. Nicolis, L.H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17:126–140.
    1. Batlle, E., J.T. Henderson, H. Beghtel, M.M.W. van den Born, E. Sancho, G. Huls, J. Meeldijk, J. Robertson, M. van de Wetering, T. Pawson, and H. Clevers. 2002. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell. 111:251–263.
    1. Bell, D.M., K.K.H. Leung, S.C. Wheatley, L.J. Ng, S. Zhou, K.W. Ling, M.H. Sham, P. Koopman, P.P.L. Tam, and K.S.E. Cheah. 1997. SOX9 directly regulates the type-II collagen gene. Nat. Genet. 16:174–178.
    1. Bi, W., J.M. Deng, Z. Zhang, R.R. Behringer, and B. de Crombrugghe. 1999. Sox9 is required for cartilage formation. Nat. Genet. 22:85–89.
    1. Bi, W., W. Huang, D.J. Whitworth, J.M. Deng, Z. Zhang, R.R. Behringer, and B. de Combrugghe. 2001. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl. Acad. Sci. USA. 98:6698–6703.
    1. Bishop, C.E., D.J. Whitworth, Y. Qin, A.I. Agoulnik, W.R. Harrison, R.R. Behringer, and P.A. Overbeek. 2000. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat. Genet. 26:490–494.
    1. Bonhomme, C., I. Duluc, E. Martin, K. Chawengsaksophak, M.-P. Chenard, M. Kedinger, F. Beck, J.N. Freund, and C. Domon-Dell. 2003. The Cdx2 homeobox gene has a tumour suppressor function in the distal colon, in addition to the homeotic role during gut development. Gut. 52:1465–1471.
    1. Brannon, M., M. Gomperts, L. Sumoy, R.T. Moon, and D. Kimelman. 1997. A β-catenin/xTcf3 complex binds to the siamois promoter to regulate dorsal axis specification in xenopus. Genes Dev. 11:2359–2370.
    1. Brantjes, H., N. Barker, J. van Es, and H. Clevers. 2002. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem. 383:255–261.
    1. Bridgewater, L.C., V. Lefebvre, and B. de Crombrugghe. 1998. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J. Biol. Chem. 273:14998–15006.
    1. Bylund, M., E. Andersson, B.G. Novitch, and J. Muhr. 2003. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6:1162–1168.
    1. Cheng, H. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am. J. Anat. 141:481–491.
    1. Cheung, M., and J. Briscoe. 2003. Neural crest development is regulated by the transcription factor Sox9. Development. 130:5681–5693.
    1. Cremazy, F., S. Soullier, P. Berta, and P. Jay. 1998. Further complexity of the human SOX gene family revealed by the combined use of highly degenerate primers and nested PCR. FEBS Lett. 438:311–314.
    1. da Costa, L.T., T.C. He, J. Yu, A.B. Sparks, P.J. Morin, K. Polyak, S. Laken, B. Vogelstein, and K.W. Kinzler. 1999. CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene. 18:5010–5014.
    1. de Santa Barbara, P., N. Bonneaud, B. Boizet, M. Desclozeaux, B. Moniot, P. Sudbeck, G. Scherer, F. Poulat, and P. Berta. 1998. Direct interaction of SRY-related protein Sox9 and steroidogenic factor 1 regulates transcription of the human anti-mullerian hormone gene. Mol. Cell. Biol. 18:6653–6665.
    1. Duprey, P., K. Chowdhury, G.R. Dressler, R. Balling, D. Simon, J.L. Guenet, and P. Gruss. 1988. A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev. 2:1647–1654.
    1. Ee, H., T. Erler, P.S. Bhathal, G.P. Young, and R.J. James. 1995. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am. J. Pathol. 147:586–592.
    1. Fodde, R., W. Edelmann, K. Yang, C. van Leeuwen, C. Carlson, B. Renault, C. Breukel, E. Alt, M. Lipkin, and P.M. Khan. 1994. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl. Acad. Sci. USA. 91:8969–8973.
    1. Foster, J.M., M.A. Dominguez-Steglich, S. Guioli, C. Kwok, P.A. Weller, M. Stevanovic, J. Weissenbach, S. Mansour, I.D. Young, P.N. Goodfellow, et al. 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 372:525–530.
    1. Gottardi, C.J., E. Wong, and B.M. Gumbiner. 2001. E-Cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J. Cell Biol. 153:1049–1060.
    1. Grotewold, L., and U. Ruther. 2002. Bmp, Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1. Int. J. Dev. Biol. 46:943–947.
    1. Harada, N., Y. Tamai, T. Ishikawa, B. Sauer, K. Tabaku, M. Oshima, and M. Taketo. 1999. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18:5931–5942.
    1. Hartmann, C., and C.J. Tabin. 2000. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 127:3141–3159.
    1. He, T.-C., A.B. Sparks, C. Rago, H. Hermeking, L. Zawel, L.T. da Costa, P.J. Morin, B. Vogelstein, and K.W. Kinzler. 1998. Identification of c-MYC as a target of the APC pathway. Science. 281:1509–1512.
    1. Hinoi, T., M. Tani, P.C. Lucas, K. Caca, R.L. Dunn, E. Macri, M. Loda, H.D. Appelman, K.R. Cho, and E.R. Fearon. 2001. Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am. J. Pathol. 159:2239–2248.
    1. Hinoi, T., M. Loda, and E.R. Fearon. 2003. Silencing of CDX2 expression in colon cancer via a dominant repression pathway. J. Biol. Chem. 278:44608–44616.
    1. Ikeya, M., and S. Takada. 2001. Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech. Dev. 103:27–33.
    1. Kamachi, Y., K.S. Cheah, and H. Kondoh. 1999. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19:107–120.
    1. Kamachi, Y., I. Uchikawa, and H. Kondoh. 2000. Pairing SOX off with partners in the regulation of embryonic development. Trends Genet. 16:182–187.
    1. Kent, J., S.C. Wheatley, J.E. Andrews, A.H. Sinclair, and P. Koopman. 1996. A male specific role for SOX9 in vertebrate sex determination. Development. 122:2813–2822.
    1. Kim, J., L. Lo, E. Dormand, and D.J. Anderson. 2003. SOX10 Maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 38:17–31.
    1. Korinek, V., N. Barker, P.J. Morin, D. van Wichen, R. de Weger, K.W. Kinzler, B. Vogelstein, and H. Clevers. 1997. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science. 275:1784–1787.
    1. Korinek, V., N. Barker, P. Moerer, E. van Donselaar, G. Huls, P.J. Peters, and H. Clevers. 1998. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19:379–383.
    1. Kypriotou, M., M. Fossard-Demoor, C. Chadjichristos, C. Ghayor, B. de Crombrugghe, J.P. Pujol, and P. Galera. 2003. SOX9 exerts a bifunctional effect on type II collagen gene (COL2A1) expression in chondrocytes depending on the differentiation state. DNA Cell Biol. 22:119–129.
    1. Lefebvre, V., W. Huang, V.R. Harley, P.N. Goodfellow, and B. de Crombrugghe. 1997. SOX9 is a potent activator of the chondrocyte-specific enhancer of the proa1(II) collagen gene. Mol. Cell. Biol. 17:2336–2346.
    1. Lickert, H., C. Domon, G. Huls, C. Wehrle, I. Duluc, H. Clevers, B.I. Meyer, J.-N. Freund, and R. Kemler. 2000. Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development. 127:3805–3813.
    1. Liu, S., R. Guo, and L.D. Quarles. 2001. Cloning and characterization of the proximal murine Phex promoter. Endocrinology. 142:3987–3995.
    1. Liu, Y., H. Li, K. Tanaka, N. Tsumaki, and Y. Yamada. 2000. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the α2(XI) collagen gene. J. Biol. Chem. 275:12712–12718.
    1. Lorentz, O., I. Duluc, A. De Arcangelis, P. Simon-Assmann, M. Kedinger, and J.-N. Freund. 1997. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J. Cell Biol. 139:1553–1565.
    1. Lorentz, O., A. Cadoret, I. Duluc, J. Capeau, C. Gespach, G. Cherqui, and J.-N. Freund. 1999. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene. 18:87–92.
    1. Mallo, G.V., H. Rechreche, J.-M. Frigerio, D. Rocha, A. Zweibaum, M. Lacasa, B.R. Jordan, N.J. Dusetti, J.-C. Dagorn, and J.L. Iovanna. 1997. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and CDX2 homeobox, down-regulation of Cdx1 and Cdx2 expression during colorectal carcinogenesis. Int. J. Cancer. 74:35–44.
    1. Mori-Akiyama, Y., H. Akiyama, D.H. Rowitch, and B. De Crombrugghe. 2003. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl. Acad. Sci. USA. 100:9360–9365.
    1. Morin, P.J., A.B. Sparks, V. Korinek, N. Barker, H. Clevers, B. Vogelstein, and K.W. Kinzler. 1997. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 275:1787–1790.
    1. Ng, L.-J., S. Wheatley, G.E.O. Muscat, J. Conway-Campbell, J. Bowles, E. Wright, D.M. Bell, P.P.L. Tam, K.S.E. Cheah, and P. Koopman. 1997. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 183:108–121.
    1. Panda, D.K., D. Miao, V. Lefebvre, G.N. Hendy, and D. Golzman. 2001. The transcription factor SOX9 regulates cell cycle and differentiation genes in chondrogenic CFK2 cells. J. Biol. Chem. 276:41229–41236.
    1. Pinto, D., A. Gregorieff, H. Begthel, and H. Clevers. 2003. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17:1709–1713.
    1. Potten, C.S., and M. Moeffler. 1990. Stem cells: attributes, cycles, pitfalls and uncertainties lessons for and from the crypt. Development. 110:1001–1020.
    1. Rings, E.H.H.M., F. Boudreau, J.K. Taylor, J. Moffett, E.R. Suh, and P.G. Traber. 2001. Phsphorylation of the serine 60 residue within the Cdx2 activation domain mediates its transactivation capacity. Gastroenterology. 121:1437–1450.
    1. Sekiya, I., K. Tsuji, P. Koopman, H. Watanabe, Y. Yamada, K. Shinomiya, A. Nifuji, and M. Noda. 2000. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J. Biol. Chem. 275:10738–10744.
    1. Shibata, H., K. Toyama, H. Shioya, M. Ito, M. Hirota, S. Hasegawa, H. Matsumoto, H. Takano, T. Akiyama, K. Toyoshima, et al. 1997. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 278:120–123.
    1. Silberg, D.G., G.P. Swain, E.R. Suh, and P.G. Traber. 2000. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology. 119:961–971.
    1. Simcha, I., C. Kirkpatrick, E. Sadot, M. Shtutman, G. Polevoy, B. Geiger, M. Peifer, and A. Ben-Ze'ev. 2001. Cadherin sequences that inhibit beta-catenin signaling: a study in yeast and mammalian cells. Mol. Biol. Cell. 12:1177–1188.
    1. Smith, J.M., and P.A. Koopman. 2004. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet. 20:4–8.
    1. Spokony, R.F., Y. Aoki, N. Saint-Germain, E. Magner-Fink, and J.P. Saint-Jeannet. 2002. The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development. 129:421–432.
    1. Stappenbeck, T.S., M.H. Wong, J.R. Saam, I.U. Mysorekar, and J.I. Gordon. 1998. Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium. Curr. Opin. Cell Biol. 10:702–709.
    1. Stolt, C.C., S. Rehberg, M. Ader, P. Lommes, D. Riethmacher, M. Schachner, U. Bartsch, and M. Wegner. 2002. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16:165–170.
    1. Stolt, C.C., P. Lommes, E. Sock, M.C. Chaboissier, A. Schedl, and M. Wegner. 2003. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17:1677–1689.
    1. Subramanian, V., B. Meyer, and G.S. Evans. 1998. The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation. 64:11–18.
    1. Südbeck, P., L. Schmitz, P.A. Baeuerle, and G. Scherer. 1996. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat. Genet. 13:230–232.
    1. Suh, E., L. Chen, J. Taylor, and P.G. Traber. 1994. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol. Cell. Biol. 14:7340–7351.
    1. Tetsu, O., and F. McCormick. 1999. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 398:422–426.
    1. van de Wetering, M., E. Sancho, C. Verweij, W. de Lau, I. Oving, A. Hurlstone, K. van der Horn, E. Batlle, D. Coudreuse, A.P. Haramis, et al. 2002. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 111:241–250.
    1. Velcich, A., W.C. Yang, J. Heyer, A. Fragale, C. Nicholas, S. Viani, R. Kucherlapati, M. Lipkin, K. Yang, and L. Augenlicht. 2002. Colorectal cancer in mice genetically deficient in the Mucin Muc2. Science. 295:1726–1729.
    1. Wagner, T., J. Wirth, J. Meyer, B. Zabel, M. Held, J. Zimmer, J. Pasantes, F.D. Bricarelli, J. Keutel, E. Hustert, et al. 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 79:1111–1120.
    1. Willert, J., M. Epping, J.R. Pollack, P.O. Brown, and R. Nusse. 2002. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2:8.
    1. Wright, E., M.R. Hargrave, J. Christiansen, L. Cooper, J. Kun, T. Evans, U. Gandadharan, A. Greenfield, and P. Koopman. 1995. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat. Genet. 9:15–20.
    1. Wunderle, V.M., R. Critcher, N. Hastie, P.N. Goodfellow, and A. Schedl. 1998. Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc. Natl. Acad. Sci. USA. 95:10649–10654.
    1. Xie, W.F., X. Zhang, S. Sakano, V. Lefebvre, and L.J. Sandell. 1999. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J. Bone Miner. Res. 14:757–763.
    1. Yamamoto, H., Y.Q. Bai, and Y. Yuasa. 2003. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem. Biophys. Res. Commun. 300:813–818.
    1. Yanfeng, W., J.P. Saint-Jeannet, and P.S. Klein. 2003. Wnt-frizzled signaling in the induction and differentiation of the neural crest. Bioessays. 25:317–325.

Source: PubMed

3
Sottoscrivi