Effect of calcitriol on serum hepcidin in individuals with chronic kidney disease: a randomized controlled trial

Bhupesh Panwar, Diane McCann, Gordana Olbina, Mark Westerman, Orlando M Gutiérrez, Bhupesh Panwar, Diane McCann, Gordana Olbina, Mark Westerman, Orlando M Gutiérrez

Abstract

Background: Anemia is highly prevalent in chronic kidney disease (CKD). Elevated hepcidin concentrations are an important mediator of disordered iron metabolism, a key mechanism underlying anemia of CKD. Vitamin D was recently shown to reduce serum hepcidin concentrations in healthy individuals. We examined whether treatment with calcitriol reduces serum hepcidin in individuals with CKD.

Methods: A total of 40 participants with stage 3 or 4 CKD (eGFR 15-60 ml/min/1.73m2) were randomized to receive either oral calcitriol 0.5 mcg daily or identically-matched placebo for 6 weeks. The primary outcome variable was change in serum hepcidin concentrations. Secondary outcomes variables included the change in iron parameters, calcium, phosphorus, intact parathyroid hormone and hemoglobin concentrations. Study samples were drawn at baseline, 3 days, 1 week, 4 weeks and 6 weeks after randomization. Repeated measures analysis was used to examine differences in outcome variables over time in the two groups.

Results: There were no significant differences in the baseline characteristics between the placebo and calcitriol arms. Over 6 weeks of follow-up there were no significant differences in the change in serum hepcidin, iron parameters, or hemoglobin between the two groups. Serum calcium and phosphorus significantly increased and PTH significantly decreased after 6 weeks in calcitriol group whereas these analytes did not change in the placebo group.

Conclusion: Calcitriol did not reduce serum hepcidin concentrations among individuals with mild to moderate CKD. Future studies are needed to assess if nutritional forms of vitamin D affect hepcidin concentrations in CKD.

Trial registration: ClinicalTrials.gov Identifier: NCT01988116 . Registered: November 4, 2013.

Keywords: Anemia of CKD; Calcitriol; Chronic kidney disease; Hepcidin; Vitamin D.

Conflict of interest statement

Ethics approval and consent to participate

Study protocol and consent was approved by the University of Alabama Ethics Committee. Study participants provided written informed consent to participate.

Consent for publication

Not applicable

Competing interests

Dr. Gutierrez reports receiving consulting fees and grant support from Keryx Biopharmaceuticals. Drs. Westerman and Olbina and Ms. McCann are employees of Intrinsic LifeSciences. Drs. Westerman and Olbina own stock in Intrinsic LifeSciences.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Overview of the study design
Fig. 2
Fig. 2
Study flow diagram depicting participant screening, enrollment, intervention allocation, and follow-up
Fig. 3
Fig. 3
Change in serum hepcidin, median [IQR]; ferritin, median [IQR]; transferrin saturation, mean (±SD); hemoglobin, mean(±SD) over time by treatment group
Fig. 4
Fig. 4
Change in mean(±SD) serum calcium, phosphorus, and PTH over time by treatment group

References

    1. Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One. 2014;9(1):e84943. doi: 10.1371/journal.pone.0084943.
    1. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, Chen J, Cope E, Gipson D, He K. US renal data system 2014 annual data report: epidemiology of kidney disease in the United States. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2015;65(6 Suppl 1):A7. doi: 10.1053/j.ajkd.2015.05.001.
    1. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–788. doi: 10.1182/blood-2003-03-0672.
    1. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M. Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci U S A. 2005;102(5):1324–1328. doi: 10.1073/pnas.0409409102.
    1. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Sci Signal. 2004;306(5704):2090.
    1. Carvalho C, Isakova T, Collerone G, Olbina G, Wolf M, Westerman M, Gutierrez OM. Hepcidin and disordered mineral metabolism in chronic kidney disease. Clin Nephrol. 2011;76(2):90–98. doi: 10.5414/CN107018.
    1. Zaritsky J, Young B, Wang H-J, Westerman M, Olbina G, Nemeth E, Ganz T, Rivera S, Nissenson AR, Salusky IB. Hepcidin—a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1051–1056. doi: 10.2215/CJN.05931108.
    1. Malyszko J, Malyszko JS, Pawlak K, Mysliwiec M. Hepcidin, iron status, and renal function in chronic renal failure, kidney transplantation, and hemodialysis. Am J Hematol. 2006;81(11):832–837. doi: 10.1002/ajh.20657.
    1. Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, Taube DH, Bloom SR, Tam FW, Chapman RS. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int. 2009;75(9):976–981. doi: 10.1038/ki.2009.21.
    1. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, Nayak A, Wesseling-Perry K, Westerman M, Hollis BW, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564–572. doi: 10.1681/ASN.2013040355.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–4297. doi: 10.1182/blood-2008-02-139915.
    1. Babitt JL, Lin HY. Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2010;55(4):726–741. doi: 10.1053/j.ajkd.2009.12.030.
    1. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–1634. doi: 10.1681/ASN.2011111078.
    1. Cooke KS, Hinkle B, Salimi-Moosavi H, Foltz I, King C, Rathanaswami P, Winters A, Steavenson S, Begley CG, Molineux G, et al. A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates. Blood. 2013;122(17):3054–3061. doi: 10.1182/blood-2013-06-505792.
    1. Sasu BJ, Cooke KS, Arvedson TL, Plewa C, Ellison AR, Sheng J, Winters A, Juan T, Li H, Begley CG, et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood. 2010;115(17):3616–3624. doi: 10.1182/blood-2009-09-245977.
    1. Nemeth E. Anti-hepcidin therapy for iron-restricted anemias. Blood. 2013;122(17):2929–2931. doi: 10.1182/blood-2013-08-522466.
    1. Zughaier SM, Alvarez JA, Sloan JH, Konrad RJ, Tangpricha V. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol. 2014;1(1):19–25. doi: 10.1016/j.jcte.2014.01.003.

Source: PubMed

3
Sottoscrivi