Kinetics of 2 different high-sensitive troponins during targeted temperature management in out-of-hospital cardiac arrest patients with acute myocardial infarction: a post hoc sub-study of a randomised clinical trial

Alf Inge Larsen, Anders Morten Grejs, Simon Tilma Vistisen, Kristian Strand, Øyvind Skadberg, Anni Nørgaard Jeppesen, Christophe H V Duez, Hans Kirkegaard, Eldar Søreide, Alf Inge Larsen, Anders Morten Grejs, Simon Tilma Vistisen, Kristian Strand, Øyvind Skadberg, Anni Nørgaard Jeppesen, Christophe H V Duez, Hans Kirkegaard, Eldar Søreide

Abstract

Introduction: Short term hypothermia has been suggested to have cardio protective properties in acute myocardial infarction (AMI) by reducing infarct size as assessed by troponins. There are limited data on the kinetics of these biomarkers in comatose out-of-hospital cardiac arrest (OHCA) patients, with and without AMI, undergoing targeted temperature management (TTM) in the ICU.

Purpose: The aim of this post hoc analyses was to evaluate and compare the kinetics of two high-sensitivity cardiac troponins in OHCA survivors, with and without acute myocardial infarction (AMI), during TTM of different durations [24 h (standard) vs. 48 h (prolonged)].

Methods: In a sub-cohort (n = 114) of the international, multicentre, randomized controlled study "TTH48" we measured high-sensitive troponin T (hs-cTnT), high-sensitive troponin I (hs-cTnI) and CK-MB at the following time points: Arrival, 24 h, 48 h and 72 h from reaching the target temperature range of 33 ± 1 °C. All patients diagnosed with an AMI at the immediate coronary angiogram (CAG)-18 in the 24-h group and 25 in the 48-h group-underwent PCI with stent implantation. There were no stent thromboses.

Results: Both the hs-cTnT and hs-cTnI changes over time were highly influenced by the cause of OHCA (AMI vs. non-AMI). In contrast to non-AMI patients, both troponins remained elevated at 72 h in AMI patients. There was no difference between the two time-differentiated TTM groups in the kinetics for the two troponins.

Conclusion: In comatose OHCA survivors with an aetiology of AMI levels of both hs-cTnI and hs-cTnT remained elevated for 72 h, which is in contrast to the well-described kinetic profile of troponins in normotherm AMI patients. There was no difference in kinetic profile between the two high sensitive assays. Different duration of TTM did not influence the kinetics of the troponins.

Trial registration: Clinicaltrials.gov Identifier: NCT01689077, 20/09/2012.

Keywords: Myocardial Infarction; Out of hospital cardiac arrest; Targeted temperature management; Troponins.

Conflict of interest statement

Anders Grejs reports to have received speaker fees from Novartis and MSD. All other authors declare no conflict of interest. Authorship: All authors had access to the data and participated in writing the manuscript according to the Vancouver protocol.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Kinetics of TnI, TnT and CK-mb in comatose survivors after OHCA. AMI compared to non-AMI. Pooled analyses of both treatment arms 24 and 48 h of TTM. Patients stratified by acute myocardial infarction (AMI) or non-AMI. hs-cTnT, hs-cTnI, CK-MB is log transformed, (mean ± SE). The units are ng/l. TNT; high sensitive troponin T, TNI; high sensitive troponin I, CK-MB; Creatine kinase MB, OHCA; out of hospital cardiac arrest, TTM; target temperature management
Fig. 2
Fig. 2
Kinetics of TnI, TnT and CK-mb in comatose survivors after OHCA treated with TTM in the TTH48 trial stratified by cause of event (AMI vs. non-AMI) and treatment group (TTM 24 h vs. TTM 48 h). Patients stratified by AMI and length of TTM, (mean ± SE). hs-cTnT, hs-cTnI, CK-MB. The units are ng/l. TNI; high sensitive troponin I, TNT; high sensitive troponin T, CK-MB; Creatin kinase MB, OHCA; out of hospital cardiac arrest, TTM; target temperature management
Fig. 3
Fig. 3
Changes in serum creatinine during 72 h as a function of aetiology (AMI or not AMI), treatment group (TTM 24 h vs. TTM 48 h) and the combination of these. Patients stratified by AMI or no-AMI, (mean ± SE). sCr; serum creatinine, AMI; acute myocardial infarction, TTM; target temperature management
Fig. 4
Fig. 4
Kinetics of TnI, TnT and CK-mb in comatose survivors after OHCA treated with TTM in the TTH48 trial. Duration of TTM. Patients stratified by treatment group, (mean ± SE). The units are ng/l. TNI; high sensitive troponin I, TNT; high sensitive troponin T, MB; Creatine kinase MB, TTM; target temperature management
Fig. 5
Fig. 5
Effect of age > 63 and female gender on the levels troponins. Patients stratified by age and gender, (mean ± SE). The units are ng/l. TNI; high sensitive troponin I, TNT; high sensitive troponin T
Fig. 6
Fig. 6
Summary of results for TNI, TNT and CK-MB, treatment length, AMI versus non ami, age and gender. The units are ng/l. TNI; high sensitive troponin I, TNT; high sensitive troponin T, AMI; acute myocardial infarction. (mean ± SE)

References

    1. Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem. 2008;45:349–355. doi: 10.1258/acb.2007.007229.
    1. Hallén J. Troponin for the estimation of infarct size: What have we learned? Cardiology. 2012;121:204–212. doi: 10.1159/000337113.
    1. Sang Hoon O, Kim YM, Kim HJ, Youn CS, Choi SP, Wee JH, Kim SH, Jeong WJ, Park KN. Implication of Cardiac marker elevation in patients who resuscitated from out-of-hospital cardiac arrest. Am J Emerg Med. 2012;30(3):464–471. doi: 10.1016/j.ajem.2010.12.022.
    1. Lin CC, Chiu TF, Fang JY, Kuan JT, Chen JC. The influence of cardiopulmonary resuscitation without defibrillation on serum levels of cardiac enzymes: a time course study of out-of-hospital cardiac arrest survivors. Resuscitation. 2006;68:343–349. doi: 10.1016/j.resuscitation.2005.07.018.
    1. The Hypothermia after Cardiac Arrest (HACA) Study Group Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–556. doi: 10.1056/NEJMoa012689.
    1. Lascarrou JB, Merdji H, Le Gouge A, CRICS-TRIGGERSEP Group et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327–2337. doi: 10.1056/NEJMoa1906661.
    1. Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(suppl 2):S465–S482.
    1. Götberg M, Olivecrona GK, Engblom H, et al. Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size. BMC Cardiovasc Disord. 2008;8:7. doi: 10.1186/1471-2261-8-7.
    1. Dae MW, Gao DW, Sessler DI, Chair K, Stillson CA. Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs. Am J Physiol Heart Circ Physiol. 2002;282:H1584–H1591. doi: 10.1152/ajpheart.00980.2001.
    1. Götberg M, Olivecrona GK, Koul S, et al. A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv. 2010;3:400–407. doi: 10.1161/CIRCINTERVENTIONS.110.957902.
    1. Koreny M, Sterz F, Uray T, et al. Effect of cooling after human cardiac arrest on myocardial infarct size. Resuscitation. 2009;80:56–60. doi: 10.1016/j.resuscitation.2008.08.019.
    1. Erlinge D, Götberg M, Lang I, Holzer M, Noc M, Clemmensen P, Jensen U, Metzler B, James S, Bötker HE, Omerovic E, Engblom H, Carlsson M, Arheden H, Östlund O, Wallentin L, Harnek J, Olivecrona GK. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol. 2014;63(18):1857–1865. doi: 10.1016/j.jacc.2013.12.027.
    1. Kirkegaard H, Søreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2017;318:341–350. doi: 10.1001/jama.2017.8978.
    1. Kirkegaard H, Rasmussen BS, de Haas I, et al. Time-differentiated target temperature management after out-of-hospital cardiac arrest: a multicentre, randomised, parallel-group, assessor-blinded clinical trial (the TTH48 trial): study protocol for a randomised controlled trial. Trials. 2016;17:228. doi: 10.1186/s13063-016-1338-9.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. REDCap consortium, the REDCap consortium: building an international community of software partners. J Biomed Inform J Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
    1. Laugaudin G, Kuster N, Petiton A, et al. Kinetics of high-sensitivity cardiac troponin T and I differ in patients with ST-segment elevation myocardial infarction treated by primary coronary intervention. Eur Heart J Acute Cardiovasc Care. 2016;5:354–363. doi: 10.1177/2048872615585518.
    1. Dae M, O'Neill W, Grines C, et al. Effects of endovascular cooling on infarct size in ST-segment elevation myocardial infarction: a patient-level pooled analysis from randomized trials. J Interv Cardiol. 2018;31:269–276. doi: 10.1111/joic.12485.
    1. Testori C, Beitzke D, Mangold A, Sterz F, Loewe C, Weiser C. Out-of-hospital initiation of hypothermia in ST-segment elevation myocardial infarction: a randomised trial. Heart. 2019;105:531–537. doi: 10.1136/heartjnl-2018-313705.
    1. Noc M, Laanmets P, Neskovic AN, et al. A multicentre, prospective, randomised controlled trial to assess the safety and effectiveness of cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction: the COOL AMI EU pivotal trial. EuroIntervention. 2021;17:466–473. doi: 10.4244/EIJ-D-21-00348.
    1. Grejs AM, Gjedsted J, Thygesen K, et al. The extent of myocardial injury during prolonged targeted temperature management after out-of-hospital cardiac arrest. Am J Med. 2017;130:37–46. doi: 10.1016/j.amjmed.2016.06.047.
    1. Chung JZ, Dallas Jones GR. Effect of renal function on serum cardiac troponin T – population and individual effects. Clin Biochem. 2015;48:807–810. doi: 10.1016/j.clinbiochem.2015.05.004.
    1. Chesnaye NC, Szummer K, Bárány P, et al. Association between renal function and troponin T over time in stable chronic kidney disease patients. J Am Heart Assoc. 2019;8(21):e13091–13111. doi: 10.1161/JAHA.119.013091.
    1. Amin AP, Salisbury AC, McCullough PA, et al. Trends in the incidence of acute kidney injury in patients hospitalized with acute myocardial infarction. Arch Intern Med. 2012;172:246–253. doi: 10.1001/archinternmed.2011.1202.
    1. Yanta J, Guyette F, Doshi A, Callaway C, Rittenberger J. Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. Resuscitation. 2013;84:1371–1374. doi: 10.1016/j.resuscitation.2013.03.037.
    1. Roman-Pognuz E, Elmer J, et al. Markers of cardiogenic shock predict persistent acute kidney injury after out of hospital cardiac arrest. Heart Lung. 2019;48:126–130. doi: 10.1016/j.hrtlng.2018.10.025.
    1. Zeiner A, Sunder-Plassmann G, Sterz F, et al. The effect of mild therapeutic hypothermia on renal function after cardiopulmonary resuscitation in men. Resuscitation. 2004;3:253–261. doi: 10.1016/j.resuscitation.2003.11.006.
    1. DeRosa S, Cal MD, Joannidis M, et al. The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol. 2017;18:376–386. doi: 10.1186/s12882-017-0780-6.
    1. Strand K, Søreide E, Kirkegaard H, et al. The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: a post hoc analysis of the TTH48 trial. Resuscitation. 2020;151:10–17. doi: 10.1016/j.resuscitation.2020.01.039.
    1. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019;380:1397–1407. doi: 10.1056/NEJMoa1816897.
    1. Rundgren M, Ullen S, Morgan MPG, et al. Renal function after out-of-hospital cardiac arrest; the influence of temperature management and coronary angiography, a post-hoc study of the target temperature management trial. Crit Care. 2019;23:163–173. doi: 10.1186/s13054-019-2390-0.
    1. Wang AY, Lai KN. Use of cardiac biomarkers in end-stage renal disease. J Am Soc Nephrol. 2008;19:1643–1652. doi: 10.1681/ASN.2008010012.
    1. Newby LK, Jesse RL, Babb JD, et al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on clinical expert consensus documents. J Am Coll Cardiol. 2012;60:2427–2463. doi: 10.1016/j.jacc.2012.08.969.
    1. Ellis K, Dreisbach AW, Lertora JL. Plasma elimination of cardiac troponin I in end-stage renal disease. South Med J. 2001;94:993–996. doi: 10.1097/00007611-200194100-00011.
    1. Diris JH, Hackeng CM, Kooman JP, et al. Impaired renal clearance explains elevated troponin T fragments in hemodialysis patients. Circulation. 2004;109:23–25. doi: 10.1161/01.CIR.0000109483.45211.8F.
    1. Ameloot K, Jakkula P, Hästbacka J, et al. Optimum blood pressure in patients with shock after acute myocardial infarction and cardiac arrest. J Am Coll Cardiol. 2020;76:812–824. doi: 10.1016/j.jacc.2020.06.043.
    1. Gilje P, Koul S, Thomsen JH, Devaux Y, Friberg H, Kuiper M, Horn J, Nielsen N, Pellis T, Stammet P, Wise MP, Kjaergaard J, Hassager C, Erlinge D. High-sensitivity troponin-T as a prognostic marker after out-of-hospital cardiac arrest – A targeted temperature management (TTM) trial substudy. Resuscitation. 2016;107:156–161. doi: 10.1016/j.resuscitation.2016.06.024.
    1. Thygesen K, Mair J, Katus H, et al. Study group on biomarkers in cardiology of the ESCWGoACC. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J. 2010;31:2197–2204. doi: 10.1093/eurheartj/ehq251.
    1. Thygesen K, Mair J, Giannitsis E, et al. Study group on biomarkers in cardiology of ESCWGoACC. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–2257. doi: 10.1093/eurheartj/ehs154.
    1. Rainio P, Sormunen R, Lepojärvi M, Nissinen J, Kaukoranta P, Peuhkurinen K. Ultrastructural changes during continuous retrograde warm and mild hypothermic blood cardioplegia for coronary bypass operations. J Thorac Cardiovasc Surg. 1995;110:81–88. doi: 10.1016/S0022-5223(05)80012-1.
    1. Kurz K, Giannitsis E, Becker M, Hess G, Zdunek D, Katus HA. Comparison of thenew high sensitive cardiac troponin T with myoglobin, h-FABP and cTnT for early identification of myocardial necrosis in the acute coronary syndrome. Clin Res Cardiol. 2011;3:209–215. doi: 10.1007/s00392-010-0230-y.
    1. Chisholm GE, Grejs A, Thim T, et al. Safety of therapeutic hypothermia combined with primary percutaneous coronary intervention after out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care. 2015;4:60–63. doi: 10.1177/2048872614540093.
    1. Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–2294. doi: 10.1056/NEJMoa2100591.
    1. Kelly FE, Nolan JP. The effects of mild induced hypothermia on the myocardium: a systematic review. Anaesthesia. 2010;65:505–515. doi: 10.1111/j.1365-2044.2009.06237.x.

Source: PubMed

3
Sottoscrivi