Surface-Enhanced Raman Scattering from Dye Molecules in Silicon Nanowire Structures Decorated by Gold Nanoparticles

Saltanat B Ikramova, Zhandos N Utegulov, Kadyrjan K Dikhanbayev, Abduzhappar E Gaipov, Renata R Nemkayeva, Valery G Yakunin, Vladimir P Savinov, Victor Yu Timoshenko, Saltanat B Ikramova, Zhandos N Utegulov, Kadyrjan K Dikhanbayev, Abduzhappar E Gaipov, Renata R Nemkayeva, Valery G Yakunin, Vladimir P Savinov, Victor Yu Timoshenko

Abstract

Silicon nanowires (SiNWs) prepared by metal-assisted chemical etching of crystalline silicon wafers followed by deposition of plasmonic gold (Au) nanoparticles (NPs) were explored as templates for surface-enhanced Raman scattering (SERS) from probe molecules of Methylene blue and Rhodamine B. The filling factor by pores (porosity) of SiNW arrays was found to control the SERS efficiency, and the maximal enhancement was observed for the samples with porosity of 55%, which corresponded to dense arrays of SiNWs. The obtained results are discussed in terms of the electromagnetic enhancement of SERS related to the localized surface plasmon resonances in Au-NPs on SiNW's surfaces accompanied with light scattering in the SiNW arrays. The observed SERS effect combined with the high stability of Au-NPs, scalability, and relatively simple preparation method are promising for the application of SiNW:Au-NP hybrid nanostructures as templates in molecular sensorics.

Keywords: gold; mesopores; molecular sensorics; nanoparticles; nanostructures; nanowires; plasmonics; silicon; surface-enhanced Raman scattering.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic illustration of the fabrication process of SiNWs:Au-NPs: (a) deposition of catalytic Au-NPs on c- Si surface in HAuCl4/HF/H2O; (b) Au-NP-assisted etching with the HF/H2O2 solution; (c) removal of residual Au-NPs in HCl/HNO3 solution; (d) deposition of Au-NPs from HAuCl4/HF/H2O into SiNW arrays.
Figure 2
Figure 2
SEM images of Au-NPs deposited on the surface of c-Si wafers for different deposition times: (a) 10 s, (b) 20 s, and (c) 30 s. The corresponding size of distribution for Au-NPs (orange bars) and their fits by log-normal functions (solid line) are shown in the insets.
Figure 3
Figure 3
Top-view SEM images of SiNWs:Au-NPs samples prepared at the following time tdep: (a) 10 s, (b) 20 s, and (c) 30 s. Upper and lower insets show lateral views of whole arrays and tips of SiNWs, respectively.
Figure 4
Figure 4
TEM images of (a) individual SiNW with deposited Au-NPs and (b) tip of such nanowire.
Figure 5
Figure 5
Spectra of the total reflectance for SiNWs and SiNWs:Au-NPs with different tdep (a) 10 s; (b) 20 s; (c) 30 s, respectively.
Figure 6
Figure 6
(a) Raman and PL spectra measured for SiNWs:Au-NPs arrays with porosity P = 55% (black line), 72% (red line), and 83% (blue line) after deposition of MB molecules (10−6 M); (b) the same spectrum for the sample with porosity 55% (black line) and its deconvolution by SERS (red line) and PL (dashed blue line) spectra.
Figure 7
Figure 7
SERS spectra of SiNWs:Au-NPs samples with different porosity P after adsorption of 10−6 M of MB molecules.
Figure 8
Figure 8
SERS spectra of SiNWs:Au-NPs (P = 55%) with different concentrations of deposited MB molecules.
Figure 9
Figure 9
SERS spectra of SiNWs:Au-NPs with P = 55% after deposition of Rhodamine B with different molar concentrations.

References

    1. Fleischmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974;26:163–166. doi: 10.1016/0009-2614(74)85388-1.
    1. Aroca R. Surface-Enhanced Vibrational Spectroscopy. John Wiley & Sons, Ltd.; Chicester, UK: 2006.
    1. Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L. A Review on Surface-Enhanced Raman Scattering. Biosensors. 2019;9:57. doi: 10.3390/bios9020057.
    1. Ngo H.H., Vaan S.T., Wershan C., Jiang Z., Shuang L., Cuong T., Xinbo Z. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Biores. Technol. 2015;182:353–363. doi: 10.1016/j.biortech.2015.02.003.
    1. Park I., Li Z., Pisano A.B., Williams R.S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology. 2009;21:015501. doi: 10.1088/0957-4484/21/1/015501.
    1. Xu D., Jiang H., Zhang S., Yang W., Zhang Y., Wang Z., Chen J. High roughness gold nanoparticles/silver nanowires composites: Fabrication, characterization and ultrasensitive SERS detection towards Rhodamine B. Microchem. J. 2020;158:105136. doi: 10.1016/j.microc.2020.105136.
    1. Ouhibi A., Raouafi A., Lorrain N., Guendouz M., Raouafi N., Moadhen A. Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen. Sens. Actuat. B Chem. 2021;330:129352. doi: 10.1016/j.snb.2020.129352.
    1. Luo S.C., Sivashanmugan K., Liao J.D., Yao C.K., Peng H.C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 2014;61:232–240. doi: 10.1016/j.bios.2014.05.013.
    1. Sudhir C. Surface-enhanced Raman spectroscopy for biomedical applications: A review. Sensors & Transduc. 2016;197:1–13.
    1. Tahir A.M., Dina N.E., Cheng H., Valev V.K., Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale. 2021;13:11593–11634. doi: 10.1039/D1NR00708D.
    1. Wang X., Li J., Shen Y., Xie A. An assembled ordered W18O49 nanowire film with high SERS sensitivity and stability for the detection of RB. Appl. Surf. Sci. 2020;504:144073. doi: 10.1016/j.apsusc.2019.144073.
    1. Kamińska A., Szymborski T., Jaroch T., Zmysłowski A., Szterk A. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Mat. Sci. Engin. C. 2018;84:208–217. doi: 10.1016/j.msec.2017.11.029.
    1. Aitekenov S., Abdirova P., Yussupova L., Sultangaziyev A., Gaipov A., Utegulov Z., Bukasov R. Raman, Infrared and Brillouin spectroscopies of biofluids for medical diagnostics and for detection of biomarkers. Crit. Rev. Anal. Chem. 2022:1–30. doi: 10.1080/10408347.2022.2036941.
    1. Johnson W.L., Kim S.A., Utegulov Z.N., Shaw J.M., Draine B.T. Optimization of arrays of gold nanodisks for plasmon-mediated Brillouin light scattering. J. Phys. Chem. C. 2009;113:14651–14657. doi: 10.1021/jp903965d.
    1. Su L., Wang S., Wang L., Yan Z., Yi H., Zhang D., Shen G., Ma Y. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochim. Acta Part. A Molec. Biomolec. Spectr. 2020;225:117511. doi: 10.1016/j.saa.2019.117511.
    1. Roy A., Chini T.K., Satpati B.A. A simple method of growing endotaxial silver nanostructures on silicon for applications in surface enhanced Raman scattering (SERS) Appl. Surf. Sci. 2020;501:144225. doi: 10.1016/j.apsusc.2019.144225.
    1. Kornilova A.V., Novikov S.M., Kuralbayeva G.A., Jana S., Lysenko I.V., Shpichka A.I., Stavitskaya A.V., Gorbachevskii M.V., Novikov A.A., Ikramova S.B., et al. Timoshenko. Halloysite nanotubes with immobilized plasmonic nanoparticles for biophotonic applications. Appl. Sci. 2021;11:4565. doi: 10.3390/app11104565.
    1. Laurence T.A., Braun G., Talley C., Schwartzberg A., Moskovits M., Reich N., Huser T. Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates. J. Am. Chem. Soc. 2009;131:162–169. doi: 10.1021/ja806236k.
    1. Gonchar K.A., Agafilushkina S.N., Moiseev D.V., Bozhev I.V., Manykin A.A., Kropotkina E.A., Gambaryan A.S., Osminkina L.A. H1N1 influenza virus interaction with a porous layer of silicon nanowires. Mat. Res. Express. 2020;7:035002. doi: 10.1088/2053-1591/ab7719.
    1. Jabbar A.A., Alwan A.M., Zayer M.Q., Bohan A.J. Efficient single cell monitoring of pathogenic bacteria using bimetallic nanostructures embedded in gradient porous silicon. Mat. Chem. Phys. 2020;241:122359. doi: 10.1016/j.matchemphys.2019.122359.
    1. Rani S., Shukla A.K. Investigation of silver decorated silicon nanowires as ultrasensitive and cost-effective surface-enhanced Raman substrate. Thin Solid Films. 2021;723:138595. doi: 10.1016/j.tsf.2021.138595.
    1. Jian H., Dayan M., Kewei X. Growth and morphology modulation of needle-like silicon nanowires for SERS application. Rare Metal Mater. Eng. 2015;44:2692–2697. doi: 10.1016/S1875-5372(16)60020-6.
    1. Powell J.A., Venkatakrishnan K., Tan B. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial. Sci. Rep. 2016;6:19663. doi: 10.1038/srep19663.
    1. Nguyen V.T., Chinh Vu D., Hai Pham V., Binh Pham T., Hoi Pham V., Bui H. Improvement of SERS for detection of ultra-low concentration of methyl orange by nanostructured silicon decorated with Ag nanoparticles. Optik. 2021;231:166431. doi: 10.1016/j.ijleo.2021.166431.
    1. He Y., Su S., Xu T., Zhong Y., Zapien J.A., Li J., Fan C., Lee S. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today. 2011;6:122–130. doi: 10.1016/j.nantod.2011.02.004.
    1. Hong L., Wang X., Zheng H., Wang X., Yu X. Design guidelines for slanting silicon nanowire arrays for solar cell application. J. Appl. Phys. 2013;114:084303. doi: 10.1063/1.4819175.
    1. Amdouni S., Cherifi Y., Coffinier Y., Addad A., Zaïbi M., Oueslati M., Boukherroub R. Gold nanoparticles coated silicon nanowires for efficient catalytic and photocatalytic applications. Mat. Sci. Semicond. Process. 2018;75:206–213. doi: 10.1016/j.mssp.2017.11.036.
    1. Abdul Rashid J.I., Abdullah J., Yusof N.A., Hajian R. The development of silicon nanowire as sensing material and its applications. J. Nanomat. 2013;2013:14. doi: 10.1155/2013/328093.
    1. Peng F., Su Y., Ji X., Zhong Y., Wei X., He Y. Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials. 2014;35:5188–5195. doi: 10.1016/j.biomaterials.2014.03.032.
    1. Wu J.Y., Tseng C.L., Wang Y.K., Yu Y., Ou K.L., Wu C.C. Detecting interleukin-1β genes using a N2O plasma modified silicon nanowire biosensor. J. Exp. Clin. Medic. 2013;5:12–16. doi: 10.1016/j.jecm.2013.01.002.
    1. Rajkumar K., Rajendrakumar R.T. Fabrication and electrowetting properties of poly Si nanostructure based superhydrophobic platform. Plasma Chem. Plasma Proc. 2013;33:807–816. doi: 10.1007/s11090-013-9462-8.
    1. Pan H., Lim S., Poh C., Sun H., Wu X., Feng Y., Lin J. Growth of Si nanowires by thermal evaporation. Nanotechnology. 2005;16:417. doi: 10.1088/0957-4484/16/4/014.
    1. Yang Y.H., Wu S.J., Chiu H.S., Lin P.I., Chen Y.T. Catalytic growth of silicon nanowires assisted by laser ablation. J. Phys. Chem. B. 2004;108:846–852. doi: 10.1021/jp030663d.
    1. Mrazkova Z., Foldyna M., Misra S., Al-Ghzaiwat M., Postava K., Pištora J., Roca i Cabarrocas P. In-situ Mueller matrix ellipsometry of silicon nanowires grown by plasma-enhanced vapor-liquid-solid method for radial junction solar cells. Appl. Surf. Sci. 2017;421:667–673. doi: 10.1016/j.apsusc.2016.12.199.
    1. Ng R.M.Y., Wang T., Liu F., Zuo X., He J., Chan M. Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation. IEEE Electr. Dev. Lett. 2009;30:520–522. doi: 10.1109/LED.2009.2014975.
    1. Schmidt V., Wittemann J.V., Senz S., Gösele U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mat. 2009;21:2681–2702. doi: 10.1002/adma.200803754.
    1. He X., Li S., Ma W., Ding Z., Yu J., Qin B., Yang J., Zou Y.X., Qiu J. A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mat. Lett. 2017;196:269–272. doi: 10.1016/j.matlet.2017.03.131.
    1. Lam N.T.N. Cong, L.T.; Giang, N.T.; Kien, P.T.; Dung, N.D.; Ha, N.N. N-type silicon nanowires prepared by silver metal-assisted chemical etching: Fabrication and optical properties. Mat. Sci. Semicond. Proc. 2019;90:198–204. doi: 10.1016/j.mssp.2018.10.026.
    1. Sun X., Tao R., Lin L., Li Z., Zhang Z., Feng J. Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Appl. Surf. Sci. 2011;257:3861–3866. doi: 10.1016/j.apsusc.2010.11.058.
    1. Chang Y.C., Chen C.M., Chou C.M. A facile self-deposition of Ag nanosheets on silicon substrates for high-performance SERS sensing. Opt. Mat. 2021;111:110609. doi: 10.1016/j.optmat.2020.110609.
    1. Abdolirad M., Khalilzadeh R., Alijanianzadeh M. Growth of silicon nanowires from bio-templated gold nanoparticles. Superlatt. Microstruct. 2018;120:370–376. doi: 10.1016/j.spmi.2018.05.068.
    1. Coluccio M.L., Vitis S.D., Strumbo G., Candeloro P., Perozziello G., Di Fabrizio E., Gentile F. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces. Microelectr. Eng. 2016;158:102–106. doi: 10.1016/j.mee.2016.03.045.
    1. Dridi H., Haji L., Moadhen A. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside. Appl. Surf. Sci. 2017;426:1190–1197. doi: 10.1016/j.apsusc.2017.06.251.
    1. Wang J., Jia Z., Lv C. Enhanced Raman scattering in porous silicon grating. Opt. Express. 2018;26:6507–6518. doi: 10.1364/OE.26.006507.
    1. Alwan A.M., Naseef I.A., Dheyab A.B. Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF Acid concentration. Plasmonics. 2018;13:2037–2045. doi: 10.1007/s11468-018-0720-8.
    1. Li Y., Dykes J., Chopra N. Silicon nanowire-gold nanoparticle heterostructures for Surface-enhanced Raman Spectroscopy. Nano-Struct. Nano-Objects. 2016;7:12–22. doi: 10.1016/j.nanoso.2016.04.001.
    1. Roy S.D., Ghosh M., Chowdhury J. Adsorptive parameters and influence of hot geometries on the SER(R) S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles. J. Ram. Spectr. 2015;46:451–461. doi: 10.1002/jrs.4675.
    1. Zhang L., Dang F., Ding W., Zhu L. Quantitative study of meso-damage process on concrete by CT technology and improved differential box counting method. Measurement. 2020;160:107832. doi: 10.1016/j.measurement.2020.107832.
    1. Osminkina L.A., Gonchar K.A., Marshov V.S., Bunkov K.V., Petrov D.V., Golovan L.A., Talkenberg F., Sivakov V.A., Timoshenko V.Y. Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: Evidences for light localization effect. Nanosc. Res. Lett. 2012;7:1–6. doi: 10.1186/1556-276X-7-524.
    1. Pahang F., Parvin P., Ghafoori-Fard H., Bavali A., Moafi A. Fluorescence properties of methylene blue molecules coupled with metal oxide nanoparticles Fluorescence. OSA Contin. 2020;3:688–697. doi: 10.1364/OSAC.387557.
    1. Liao W., Liu K., Chen Y., Hu J., Gan Y. Au–Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing. J. Alloys Comp. 2021;868:159136. doi: 10.1016/j.jallcom.2021.159136.

Source: PubMed

3
Sottoscrivi