Adipokines in Liver Cirrhosis

Christa Buechler, Elisabeth M Haberl, Lisa Rein-Fischboeck, Charalampos Aslanidis, Christa Buechler, Elisabeth M Haberl, Lisa Rein-Fischboeck, Charalampos Aslanidis

Abstract

Liver fibrosis can progress to cirrhosis, which is considered a serious disease. The Child-Pugh score and the model of end-stage liver disease score have been established to assess residual liver function in patients with liver cirrhosis. The development of portal hypertension contributes to ascites, variceal bleeding and further complications in these patients. A transjugular intrahepatic portosystemic shunt (TIPS) is used to lower portal pressure, which represents a major improvement in the treatment of patients. Adipokines are proteins released from adipose tissue and modulate hepatic fibrogenesis. These proteins affect various biological processes that are involved in liver function, including angiogenesis, vasodilation, inflammation and deposition of extracellular matrix proteins. The best studied adipokines are adiponectin and leptin. Adiponectin protects against hepatic inflammation and fibrogenesis, and leptin functions as a profibrogenic factor. These and other adipokines are supposed to modulate disease severity in patients with liver cirrhosis. Consequently, circulating levels of these proteins have been analyzed to identify associations with parameters of hepatic function, portal hypertension and its associated complications in patients with liver cirrhosis. This review article briefly addresses the role of adipokines in hepatitis and liver fibrosis. Here, studies having analyzed these proteins in systemic blood in cirrhotic patients are listed to identify adipokines that are comparably changed in the different cohorts of patients with liver cirrhosis. Some studies measured these proteins in systemic, hepatic and portal vein blood or after TIPS to specify the tissues contributing to circulating levels of these proteins and the effect of portal hypertension, respectively.

Keywords: MELD; adiponectin; ascites; leptin; portal vein.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Summary of the hepatic effects of the adipokines adiponectin, leptin, chemerin and omentin in the liver (inner ellipse). ⇑ indicates a positive and ⇓ a negative effect on the respective pathways. The text at the outer ellipse tells whether systemic levels of these adipokines are induced or reduced in patients with liver cirrhosis compared to controls. “Controversial” indicates that contradictory findings have been published so far.
Figure 2
Figure 2
This figure summarizes the hepatic effects of the adipokines resistin, interleukin-6, galectin-3 and visfatin in the liver (inner ellipse). ⇑ indicates a positive and ⇓ a negative effect on the respective pathways. The text at the outer ellipse is related to the respective levels in serum of patients with liver cirrhosis. “Controversial” means that contradictory findings have been published so far.

References

    1. Ge P.S., Runyon B.A. Treatment of patients with cirrhosis. N. Engl. J. Med. 2016;375:767–777. doi: 10.1056/NEJMra1504367.
    1. Buechler C., Wanninger J., Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J. Gastroenterol. 2011;17:2801–2811.
    1. Alwahsh S.M., Dwyer B.J., Forbes S., Thiel D.H., Lewis P.J., Ramadori G. Insulin production and resistance in different models of diet-induced obesity and metabolic syndrome. Int. J. Mol. Sci. 2017;18:285. doi: 10.3390/ijms18020285.
    1. Alwahsh S.M., Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD) Arch. Toxicol. 2017;91:1545–1563. doi: 10.1007/s00204-016-1892-7.
    1. Ishimoto T., Lanaspa M.A., Rivard C.J., Roncal-Jimenez C.A., Orlicky D.J., Cicerchi C., McMahan R.H., Abdelmalek M.F., Rosen H.R., Jackman M.R., et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58:1632–1643. doi: 10.1002/hep.26594.
    1. Abdelmalek M.F., Lazo M., Horska A., Bonekamp S., Lipkin E.W., Balasubramanyam A., Bantle J.P., Johnson R.J., Diehl A.M., Clark J.M. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology. 2012;56:952–960. doi: 10.1002/hep.25741.
    1. Petta S., Marchesini G., Caracausi L., Macaluso F.S., Camma C., Ciminnisi S., Cabibi D., Porcasi R., Craxi A., di Marco V. Industrial, not fruit fructose intake is associated with the severity of liver fibrosis in genotype 1 chronic hepatitis C patients. J. Hepatol. 2013;59:1169–1176. doi: 10.1016/j.jhep.2013.07.037.
    1. Berzigotti A., Garcia-Tsao G., Bosch J., Grace N.D., Burroughs A.K., Morillas R., Escorsell A., Garcia-Pagan J.C., Patch D., Matloff D.S., et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology. 2011;54:555–561. doi: 10.1002/hep.24418.
    1. Hickman I.J., Clouston A.D., Macdonald G.A., Purdie D.M., Prins J.B., Ash S., Jonsson J.R., Powell E.E. Effect of weight reduction on liver histology and biochemistry in patients with chronic hepatitis C. Gut. 2002;51:89–94. doi: 10.1136/gut.51.1.89.
    1. O’Brien A., Williams R. Nutrition in end-stage liver disease: Principles and practice. Gastroenterology. 2008;134:1729–1740. doi: 10.1053/j.gastro.2008.02.001.
    1. Alvares-da-Silva M.R., Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21:113–117. doi: 10.1016/j.nut.2004.02.002.
    1. Hanai T., Shiraki M., Nishimura K., Ohnishi S., Imai K., Suetsugu A., Takai K., Shimizu M., Moriwaki H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31:193–199. doi: 10.1016/j.nut.2014.07.005.
    1. Bedossa P., Tordjman J., Aron-Wisnewsky J., Poitou C., Oppert J.M., Torcivia A., Bouillot J.L., Paradis V., Ratziu V., Clement K. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut. 2016;24 doi: 10.1136/gutjnl-2016-312238.
    1. Buechler C., Schaffler A. Does global gene expression analysis in type 2 diabetes provide an opportunity to identify highly promising drug targets? Endocr. Metab. Immune Disord. Drug Targets. 2007;7:250–258. doi: 10.2174/187153007782794353.
    1. Foster M.T., Pagliassotti M.J. Metabolic alterations following visceral fat removal and expansion: Beyond anatomic location. Adipocyte. 2012;1:192–199. doi: 10.4161/adip.21756.
    1. Fontana L., Eagon J.C., Trujillo M.E., Scherer P.E., Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–1013. doi: 10.2337/db06-1656.
    1. Noureddin M., Yates K.P., Vaughn I.A., Neuschwander-Tetri B.A., Sanyal A.J., McCullough A., Merriman R., Hameed B., Doo E., Kleiner D.E., et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology. 2013;58:1644–1654. doi: 10.1002/hep.26465.
    1. Asahina Y., Tsuchiya K., Tamaki N., Hirayama I., Tanaka T., Sato M., Yasui Y., Hosokawa T., Ueda K., Kuzuya T., et al. Effect of aging on risk for hepatocellular carcinoma in chronic hepatitis C virus infection. Hepatology. 2010;52:518–527. doi: 10.1002/hep.23691.
    1. Pares A., Caballeria J., Bruguera M., Torres M., Rodes J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 1986;2:33–42. doi: 10.1016/S0168-8278(86)80006-X.
    1. Poynard T., Bedossa P., Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet. 1997;349:825–832. doi: 10.1016/S0140-6736(96)07642-8.
    1. Bellentani S., Scaglioni F., Marino M., Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig. Dis. 2010;28:155–161. doi: 10.1159/000282080.
    1. Guy J., Peters M.G. Liver disease in women: The influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol. Hepatol. 2013;9:633–639.
    1. D’Amico G., Garcia-Tsao G., Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. J. Hepatol. 2006;44:217–231. doi: 10.1016/j.jhep.2005.10.013.
    1. Peng Y., Qi X., Guo X. Child-pugh versus MELD score for the assessment of prognosis in liver cirrhosis: A systematic review and meta-analysis of observational studies. Medicine. 2016;95:e2877. doi: 10.1097/MD.0000000000002877.
    1. Pugh R.N., Murray-Lyon I.M., Dawson J.L., Pietroni M.C., Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973;60:646–649. doi: 10.1002/bjs.1800600817.
    1. Kamath P.S., Kim W.R. The model for end-stage liver disease (MELD) Hepatology. 2007;45:797–805. doi: 10.1002/hep.21563.
    1. Bernardi M., Moreau R., Angeli P., Schnabl B., Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 2015;63:1272–1284. doi: 10.1016/j.jhep.2015.07.004.
    1. Garcia-Tsao G., Wiest R. Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract. Res. Clin. Gastroenterol. 2004;18:353–372. doi: 10.1016/j.bpg.2003.10.005.
    1. Van Thiel D.H., Alwahsh S.M., Ramadori G. Metabolic Disease and Hepatocellular Carcinoma. In: Carr B.I., editor. Hepatocellular Carcinoma: Diagnosis and Treatment. Springer International Publishing; Cham, Vietnam: 2016. pp. 287–301.
    1. Ahmadieh H., Azar S.T. Liver disease and diabetes: Association, pathophysiology, and management. Diabetes Res. Clin. Pract. 2014;104:53–62. doi: 10.1016/j.diabres.2014.01.003.
    1. Petrides A.S., Vogt C., Schulze-Berge D., Matthews D., Strohmeyer G. Pathogenesis of glucose intolerance and diabetes mellitus in cirrhosis. Hepatology. 1994;19:616–627. doi: 10.1002/hep.1840190312.
    1. Calzadilla-Bertot L., Vilar-Gomez E., Torres-Gonzalez A., Socias-Lopez M., Diago M., Adams L.A., Romero-Gomez M. Impaired glucose metabolism increases risk of hepatic decompensation and death in patients with compensated hepatitis C virus-related cirrhosis. Dig. Liver Dis. 2016;48:283–290. doi: 10.1016/j.dld.2015.12.002.
    1. Holland-Fischer P., Nielsen M.F., Vilstrup H., Tonner-Nielsen D., Mengel A., Schmitz O., Gronbaek H. Insulin sensitivity and body composition in cirrhosis: Changes after TIPS. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G486–G493. doi: 10.1152/ajpgi.00375.2009.
    1. Dasarathy J., Alkhouri N., Dasarathy S. Changes in body composition after transjugular intrahepatic portosystemic stent in cirrhosis: A critical review of literature. Liver Int. 2011;31:1250–1258. doi: 10.1111/j.1478-3231.2011.02498.x.
    1. Duan X.F., Tang P., Li Q., Yu Z.T. Obesity, adipokines and hepatocellular carcinoma. Int. J. Cancer. 2013;133:1776–1783. doi: 10.1002/ijc.28105.
    1. Stojsavljevic S., Gomercic Palcic M., Virovic Jukic L., Smircic Duvnjak L., Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol. 2014;20:18070–18091. doi: 10.3748/wjg.v20.i48.18070.
    1. De Souza Batista C.M., Yang R.Z., Lee M.J., Glynn N.M., Yu D.Z., Pray J., Ndubuizu K., Patil S., Schwartz A., Kligman M., et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56:1655–1661. doi: 10.2337/db06-1506.
    1. Traber P.G., Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS ONE. 2013;8:e83481. doi: 10.1371/journal.pone.0083481.
    1. Soresi M., Giannitrapani L., D’Antona F., Florena A.M., La Spada E., Terranova A., Cervello M., D’Alessandro N., Montalto G. Interleukin-6 and its soluble receptor in patients with liver cirrhosis and hepatocellular carcinoma. World J. Gastroenterol. 2006;12:2563–2568. doi: 10.3748/wjg.v12.i16.2563.
    1. Streetz K.L., Tacke F., Leifeld L., Wustefeld T., Graw A., Klein C., Kamino K., Spengler U., Kreipe H., Kubicka S., et al. Interleukin 6/GP130-dependent pathways are protective during chronic liver diseases. Hepatology. 2003;38:218–229. doi: 10.1053/jhep.2003.50268.
    1. Park H.K., Ahima R.S. Resistin in rodents and humans. Diabetes Metab. J. 2013;37:404–414. doi: 10.4093/dmj.2013.37.6.404.
    1. Lin Y., Yang X., Liu W., Li B., Yin W., Shi Y., He R. Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation. Oncogene. 2017;36:3599–3608. doi: 10.1038/onc.2016.516.
    1. Dong Z., Su L., Esmaili S., Iseli T.J., Ramezani-Moghadam M., Hu L., Xu A., George J., Wang J. Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells. J. Mol. Med. 2015;93:1327–1339. doi: 10.1007/s00109-015-1313-z.
    1. Nepal S., Park P.H. Modulation of cell death and survival by adipokines in the liver. Biol. Pharm. Bull. 2015;38:961–965. doi: 10.1248/bpb.b15-00188.
    1. Walter R., Wanninger J., Bauer S., Eisinger K., Neumeier M., Weiss T.S., Amann T., Hellerbrand C., Schaffler A., Scholmerich J., et al. Adiponectin reduces connective tissue growth factor in human hepatocytes which is already induced in non-fibrotic non-alcoholic steatohepatitis. Exp. Mol. Pathol. 2011;91:740–744. doi: 10.1016/j.yexmp.2011.09.006.
    1. Kamada Y., Takehara T., Hayashi N. Adipocytokines and liver disease. J. Gastroenterol. 2008;43:811–822. doi: 10.1007/s00535-008-2213-6.
    1. Park P.H., Sanz-Garcia C., Nagy L.E. Adiponectin as an anti-fibrotic and anti-inflammatory adipokine in the liver. Curr. Pathobiol. Rep. 2015;3:243–252. doi: 10.1007/s40139-015-0094-y.
    1. Tilg H. The role of cytokines in non-alcoholic fatty liver disease. Dig. Dis. 2010;28:179–185. doi: 10.1159/000282083.
    1. Kumar P., Smith T., Rahman K., Thorn N.E., Anania F.A. Adiponectin agonist ADP355 attenuates CCl4-induced liver fibrosis in mice. PLoS ONE. 2014;9:e110405. doi: 10.1371/journal.pone.0110405.
    1. Wang H., Zhang H., Zhang Z., Huang B., Cheng X., Wang D., la Gahu Z., Xue Z., Da Y., Li D., et al. Adiponectin-derived active peptide ADP355 exerts anti-inflammatory and anti-fibrotic activities in thioacetamide-induced liver injury. Sci. Rep. 2016;6:19445. doi: 10.1038/srep19445.
    1. Buechler C., Wanninger J., Neumeier M. Adiponectin receptor binding proteins—Recent advances in elucidating adiponectin signalling pathways. FEBS Lett. 2010;584:4280–4286. doi: 10.1016/j.febslet.2010.09.035.
    1. Holland W.L., Miller R.A., Wang Z.V., Sun K., Barth B.M., Bui H.H., Davis K.E., Bikman B.T., Halberg N., Rutkowski J.M., et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011;17:55–63. doi: 10.1038/nm.2277.
    1. Tao C., Sifuentes A., Holland W.L. Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract. Res. Clin. Endocrinol. Metab. 2014;28:43–58. doi: 10.1016/j.beem.2013.11.003.
    1. Brooks S.C., 3rd, Brooks J.S., Lee W.H., Lee M.G., Kim S.G. Therapeutic potential of dithiolethiones for hepatic diseases. Pharmacol. Ther. 2009;124:31–43. doi: 10.1016/j.pharmthera.2009.06.006.
    1. Fuchs C.D., Traussnigg S.A., Trauner M. Nuclear receptor modulation for the treatment of nonalcoholic fatty liver disease. Semin. Liver Dis. 2016;36:69–86. doi: 10.1055/s-0036-1571296.
    1. Halberg N., Schraw T.D., Wang Z.V., Kim J.Y., Yi J., Hamilton M.P., Luby-Phelps K., Scherer P.E. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes. 2009;58:1961–1970. doi: 10.2337/db08-1750.
    1. Balmer M.L., Joneli J., Schoepfer A., Stickel F., Thormann W., Dufour J.F. Significance of serum adiponectin levels in patients with chronic liver disease. Clin. Sci. 2010;119:431–436. doi: 10.1042/CS20100008.
    1. Kakizaki S., Sohara N., Yamazaki Y., Horiguchi N., Kanda D., Kabeya K., Katakai K., Sato K., Takagi H., Mori M. Elevated plasma resistin concentrations in patients with liver cirrhosis. J. Gastroenterol. Hepatol. 2008;23:73–77. doi: 10.1111/j.1440-1746.2006.04757.x.
    1. Kaser S., Moschen A., Kaser A., Ludwiczek O., Ebenbichler C.F., Vogel W., Jaschke W., Patsch J.R., Tilg H. Circulating adiponectin reflects severity of liver disease but not insulin sensitivity in liver cirrhosis. J. Intern. Med. 2005;258:274–280. doi: 10.1111/j.1365-2796.2005.01543.x.
    1. Kasztelan-Szczerbinska B., Surdacka A., Slomka M., Rolinski J., Celinski K., Smolen A., Szczerbinski M. Association of serum adiponectin, leptin, and resistin concentrations with the severity of liver dysfunction and the disease complications in alcoholic liver disease. Mediat. Inflamm. 2013;2013:148526. doi: 10.1155/2013/148526.
    1. Salman T.A., Allam N., Azab G.I., Shaarawy A.A., Hassouna M.M., El-Haddad O.M. Study of adiponectin in chronic liver disease and cholestasis. Hepatol. Int. 2010;4:767–774. doi: 10.1007/s12072-010-9216-0.
    1. Sohara N., Takagi H., Kakizaki S., Sato K., Mori M. Elevated plasma adiponectin concentrations in patients with liver cirrhosis correlate with plasma insulin levels. Liver Int. 2005;25:28–32. doi: 10.1111/j.1478-3231.2004.0986.x.
    1. Tietge U.J., Boker K.H., Manns M.P., Bahr M.J. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am. J. Physiol. Endocrinol. Metab. 2004;287:E82–E89. doi: 10.1152/ajpendo.00494.2003.
    1. Derbala M., Rizk N., Al-Kaabi S., Amer A., Shebl F., Al Marri A., Aigha I., Alyaesi D., Mohamed H., Aman H., et al. Adiponectin changes in HCV-Genotype 4: Relation to liver histology and response to treatment. J. Viral Hepat. 2009;16:689–696. doi: 10.1111/j.1365-2893.2009.01096.x.
    1. Kalafateli M., Triantos C., Tsochatzis E., Michalaki M., Koutroumpakis E., Thomopoulos K., Kyriazopoulou V., Jelastopulu E., Burroughs A., Lambropoulou-Karatza C., et al. Adipokines levels are associated with the severity of liver disease in patients with alcoholic cirrhosis. World J. Gastroenterol. 2015;21:3020–3029. doi: 10.3748/wjg.v21.i10.3020.
    1. Arano T., Nakagawa H., Tateishi R., Ikeda H., Uchino K., Enooku K., Goto E., Masuzaki R., Asaoka Y., Kondo Y., et al. Serum level of adiponectin and the risk of liver cancer development in chronic hepatitis C patients. Int. J. Cancer. 2011;129:2226–2235. doi: 10.1002/ijc.25861.
    1. Katira A., Tan P.H. Evolving role of adiponectin in cancer-controversies and update. Cancer Biol. Med. 2016;13:101–119. doi: 10.20892/j.issn.2095-3941.2015.0092.
    1. Asada K., Yoshiji H., Noguchi R., Ikenaka Y., Kitade M., Kaji K., Yoshii J., Yanase K., Namisaki T., Yamazaki M., et al. Crosstalk between high-molecular-weight adiponectin and T-cadherin during liver fibrosis development in rats. Int. J. Mol. Med. 2007;20:725–729.
    1. Abke S., Neumeier M., Weigert J., Wehrwein G., Eggenhofer E., Schaffler A., Maier K., Aslanidis C., Scholmerich J., Buechler C. Adiponectin-induced secretion of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1, CCL2) and interleukin-8 (IL-8, CXCL8) is impaired in monocytes from patients with type I diabetes. Cardiovasc. Diabetol. 2006;5:17. doi: 10.1186/1475-2840-5-17.
    1. Fantuzzi G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine. 2013;64:1–10. doi: 10.1016/j.cyto.2013.06.317.
    1. Weigert J., Obermeier F., Neumeier M., Wanninger J., Filarsky M., Bauer S., Aslanidis C., Rogler G., Ott C., Schaffler A., et al. Circulating levels of chemerin and adiponectin are higher in ulcerative colitis and chemerin is elevated in Crohn’s disease. Inflamm. Bowel Dis. 2010;16:630–637. doi: 10.1002/ibd.21091.
    1. Tacke F., Wustefeld T., Horn R., Luedde T., Srinivas Rao A., Manns M.P., Trautwein C., Brabant G. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J. Hepatol. 2005;42:666–673. doi: 10.1016/j.jhep.2004.12.024.
    1. Sadik N.A., Ahmed A., Ahmed S. The significance of serum levels of adiponectin, leptin, and hyaluronic acid in hepatocellular carcinoma of cirrhotic and noncirrhotic patients. Hum. Exp. Toxicol. 2012;31:311–321. doi: 10.1177/0960327111431091.
    1. Wiest R., Moleda L., Farkas S., Scherer M., Kopp A., Wonckhaus U., Buchler C., Scholmerich J., Schaffler A. Splanchnic concentrations and postprandial release of visceral adipokines. Metabolism. 2010;59:664–670. doi: 10.1016/j.metabol.2009.09.011.
    1. Neumeier M., Hellerbrand C., Gabele E., Buettner R., Bollheimer C., Weigert J., Schaffler A., Weiss T.S., Lichtenauer M., Scholmerich J., et al. Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis. World J. Gastroenterol. 2006;12:5490–5494. doi: 10.3748/wjg.v12.i34.5490.
    1. Thomsen K.L., Sandahl T.D., Holland-Fischer P., Jessen N., Frystyk J., Flyvbjerg A., Gronbaek H., Vilstrup H. Changes in adipokines after transjugular intrahepatic porto-systemic shunt indicate an anabolic shift in metabolism. Clin. Nutr. 2012;31:940–945. doi: 10.1016/j.clnu.2012.04.001.
    1. Suzuki A., Mendes F., Lindor K. Diagnostic model of esophageal varices in alcoholic liver disease. Eur. J. Gastroenterol. Hepatol. 2005;17:307–309. doi: 10.1097/00042737-200503000-00008.
    1. Eslam M., Ampuero J., Jover M., Abd-Elhalim H., Rincon D., Shatat M., Camacho I., Kamal A., Lo Iacono O., Nasr Z., et al. Predicting portal hypertension and variceal bleeding using non-invasive measurements of metabolic variables. Ann. Hepatol. 2013;12:588–598.
    1. Wiest R., Leidl F., Kopp A., Weigert J., Neumeier M., Buechler C., Schoelmerich J., Schaffler A. Peritoneal fluid adipokines: Ready for prime time? Eur. J. Clin. Investig. 2009;39:219–229. doi: 10.1111/j.1365-2362.2009.02085.x.
    1. Kaser S., Moschen A., Cayon A., Kaser A., Crespo J., Pons-Romero F., Ebenbichler C.F., Patsch J.R., Tilg H. Adiponectin and its receptors in non-alcoholic steatohepatitis. Gut. 2005;54:117–121. doi: 10.1136/gut.2003.037010.
    1. Van der Poorten D., Samer C.F., Ramezani-Moghadam M., Coulter S., Kacevska M., Schrijnders D., Wu L.E., McLeod D., Bugianesi E., Komuta M., et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: Are alterations in serum adiponectin the cause? Hepatology. 2013;57:2180–2188. doi: 10.1002/hep.26072.
    1. Plauth M., Schutz E.T. Cachexia in liver cirrhosis. Int. J. Cardiol. 2002;85:83–87. doi: 10.1016/S0167-5273(02)00236-X.
    1. Eisinger K., Krautbauer S., Wiest R., Weiss T.S., Buechler C. Reduced serum chemerin in patients with more severe liver cirrhosis. Exp. Mol. Pathol. 2015;98:208–213. doi: 10.1016/j.yexmp.2015.01.010.
    1. Eisinger K., Krautbauer S., Wiest R., Karrasch T., Hader Y., Scherer M.N., Farkas S., Aslanidis C., Buechler C. Portal vein omentin is increased in patients with liver cirrhosis but is not associated with complications of portal hypertension. Eur. J. Clin. Investig. 2013;43:926–932. doi: 10.1111/eci.12122.
    1. Wanninger J., Weigert J., Wiest R., Bauer S., Karrasch T., Farkas S., Scherer M.N., Walter R., Weiss T.S., Hellerbrand C., et al. Systemic and hepatic vein galectin-3 are increased in patients with alcoholic liver cirrhosis and negatively correlate with liver function. Cytokine. 2011;55:435–440. doi: 10.1016/j.cyto.2011.06.001.
    1. Wiest R., Weigert J., Wanninger J., Neumeier M., Bauer S., Schmidhofer S., Farkas S., Scherer M.N., Schaffler A., Scholmerich J., et al. Impaired hepatic removal of interleukin-6 in patients with liver cirrhosis. Cytokine. 2011;53:178–183. doi: 10.1016/j.cyto.2010.06.013.
    1. Ernst M.C., Sinal C.J. Chemerin: At the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 2010;21:660–667. doi: 10.1016/j.tem.2010.08.001.
    1. Goralski K.B., McCarthy T.C., Hanniman E.A., Zabel B.A., Butcher E.C., Parlee S.D., Muruganandan S., Sinal C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007;282:28175–28188. doi: 10.1074/jbc.M700793200.
    1. Krautbauer S., Wanninger J., Eisinger K., Hader Y., Beck M., Kopp A., Schmid A., Weiss T.S., Dorn C., Buechler C. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol. 2013;95:199–205. doi: 10.1016/j.yexmp.2013.07.009.
    1. Zabel B.A., Kwitniewski M., Banas M., Zabieglo K., Murzyn K., Cichy J. Chemerin regulation and role in host defense. Am. J. Clin. Exp. Immunol. 2014;3:1–19.
    1. Buechler C. Chemerin in Liver Diseases. Endocrinol. Metab. Syndr. 2014;3:1–6.
    1. Wanninger J., Bauer S., Eisinger K., Weiss T.S., Walter R., Hellerbrand C., Schaffler A., Higuchi A., Walsh K., Buechler C. Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver. Mol. Cell. Endocrinol. 2012;349:248–254. doi: 10.1016/j.mce.2011.10.032.
    1. Gruben N., Aparicio Vergara M., Kloosterhuis N.J., van der Molen H., Stoelwinder S., Youssef S., de Bruin A., Delsing D.J., Kuivenhoven J.A., van de Sluis B., et al. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice. PLoS ONE. 2014;9:e96345. doi: 10.1371/journal.pone.0096345.
    1. Rourke J.L., Muruganandan S., Dranse H.J., McMullen N.M., Sinal C.J. Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. J. Endocrinol. 2014;222:201–215. doi: 10.1530/JOE-14-0069.
    1. Takahashi M., Okimura Y., Iguchi G., Nishizawa H., Yamamoto M., Suda K., Kitazawa R., Fujimoto W., Takahashi K., Zolotaryov F.N., et al. Chemerin regulates β-cell function in mice. Sci. Rep. 2011;1:123. doi: 10.1038/srep00123.
    1. Becker M., Rabe K., Lebherz C., Zugwurst J., Goke B., Parhofer K.G., Lehrke M., Broedl U.C. Expression of human chemerin induces insulin resistance in the skeletal muscle but does not affect weight, lipid levels, and atherosclerosis in LDL receptor knockout mice on high-fat diet. Diabetes. 2010;59:2898–2903. doi: 10.2337/db10-0362.
    1. Bauer S., Wanninger J., Schmidhofer S., Weigert J., Neumeier M., Dorn C., Hellerbrand C., Zimara N., Schaffler A., Aslanidis C., et al. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology. 2011;152:26–35. doi: 10.1210/en.2010-1157.
    1. Bozaoglu K., Bolton K., McMillan J., Zimmet P., Jowett J., Collier G., Walder K., Segal D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–4694. doi: 10.1210/en.2007-0175.
    1. Weigert J., Neumeier M., Wanninger J., Filarsky M., Bauer S., Wiest R., Farkas S., Scherer M.N., Schaffler A., Aslanidis C., et al. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin. Endocrinol. 2010;72:342–348. doi: 10.1111/j.1365-2265.2009.03664.x.
    1. Toulany J., Parlee S.D., Sinal C.J., Slayter K., McNeil S., Goralski K.B. CMKLR1 activation ex vivo does not increase proportionally to serum total chemerin in obese humans. Endocr. Connect. 2016;5:70–81. doi: 10.1530/EC-16-0065.
    1. Chang S.S., Eisenberg D., Zhao L., Adams C., Leib R., Morser J., Leung L. Chemerin activation in human obesity. Obesity. 2016;24:1522–1529. doi: 10.1002/oby.21534.
    1. Kukla M., Zwirska-Korczala K., Gabriel A., Waluga M., Warakomska I., Szczygiel B., Berdowska A., Mazur W., Wozniak-Grygiel E., Kryczka W. Chemerin, vaspin and insulin resistance in chronic hepatitis C. J. Viral Hepat. 2010;17:661–667. doi: 10.1111/j.1365-2893.2009.01224.x.
    1. Imai K., Takai K., Hanai T., Shiraki M., Suzuki Y., Hayashi H., Naiki T., Nishigaki Y., Tomita E., Shimizu M., et al. Impact of serum chemerin levels on liver functional reserves and platelet counts in patients with hepatocellular carcinoma. Int. J. Mol. Sci. 2014;15:11294–11306. doi: 10.3390/ijms150711294.
    1. Sahu A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front. Neuroendocrinol. 2003;24:225–253. doi: 10.1016/j.yfrne.2003.10.001.
    1. Catteau A., Caillon H., Barriere P., Denis M.G., Masson D., Freour T. Leptin and its potential interest in assisted reproduction cycles. Hum. Reprod. Update. 2016;22 doi: 10.1093/humupd/dmv057.
    1. Procaccini C., La Rocca C., Carbone F., de Rosa V., Galgani M., Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017;66:120–129. doi: 10.1016/j.dci.2016.06.006.
    1. Aleffi S., Petrai I., Bertolani C., Parola M., Colombatto S., Novo E., Vizzutti F., Anania F.A., Milani S., Rombouts K., et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–1348. doi: 10.1002/hep.20965.
    1. Honda H., Ikejima K., Hirose M., Yoshikawa M., Lang T., Enomoto N., Kitamura T., Takei Y., Sato N. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology. 2002;36:12–21. doi: 10.1053/jhep.2002.33684.
    1. Leclercq I.A., Farrell G.C., Schriemer R., Robertson G.R. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 2002;37:206–213. doi: 10.1016/S0168-8278(02)00102-2.
    1. Schaffler A., Scholmerich J., Buchler C. Mechanisms of disease: Adipocytokines and visceral adipose tissue—Emerging role in nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005;2:273–280. doi: 10.1038/ncpgasthep0186.
    1. Bolukbas F.F., Bolukbas C., Horoz M., Gumus M., Erdogan M., Zeyrek F., Yayla A., Ovunc O. Child-Pugh classification dependent alterations in serum leptin levels among cirrhotic patients: A case controlled study. BMC Gastroenterol. 2004;4:23. doi: 10.1186/1471-230X-4-23.
    1. McCullough A.J., Bugianesi E., Marchesini G., Kalhan S.C. Gender-dependent alterations in serum leptin in alcoholic cirrhosis. Gastroenterology. 1998;115:947–953. doi: 10.1016/S0016-5085(98)70267-7.
    1. Ataseven H., Bahcecioglu I.H., Kuzu N., Yalniz M., Celebi S., Erensoy A., Ustundag B. The levels of ghrelin, leptin, TNF-α, and IL-6 in liver cirrhosis and hepatocellular carcinoma due to HBV and HDV infection. Mediat. Inflamm. 2006;2006:78380. doi: 10.1155/MI/2006/78380.
    1. Onodera K., Kato A., Suzuki K. Serum leptin concentrations in liver cirrhosis: Relationship to the severity of liver dysfunction and their characteristic diurnal profiles. Hepatol. Res. 2001;21:205–212. doi: 10.1016/S1386-6346(01)00107-3.
    1. Shiraki M., Terakura Y., Iwasa J., Shimizu M., Miwa Y., Murakami N., Nagaki M., Moriwaki H. Elevated serum tumor necrosis factor-α and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis. Nutrition. 2010;26:269–275. doi: 10.1016/j.nut.2009.04.016.
    1. Lin S.Y., Wang Y.Y., Sheu W.H. Increased serum leptin concentrations correlate with soluble tumour necrosis factor receptor levels in patients with cirrhosis. Clin. Endocrinol. 2002;57:805–811. doi: 10.1046/j.1365-2265.2002.01672.x.
    1. Rachakonda V., Borhani A.A., Dunn M.A., Andrzejewski M., Martin K., Behari J. Serum leptin is a biomarker of malnutrition in decompensated cirrhosis. PLoS ONE. 2016;11:e0159142. doi: 10.1371/journal.pone.0159142.
    1. Garcia-Compean D., Jaquez-Quintana J.O., Lavalle-Gonzalez F.J., Gonzalez-Gonzalez J.A., Maldonado-Garza H.J., Villarreal-Perez J.Z. Plasma cytokine levels imbalance in cirrhotic patients with impaired glucose tolerance and diabetes mellitus. A prospective study. Ann. Hepatol. 2014;13:403–410. doi: 10.1016/S0016-5085(14)62565-8.
    1. Campillo B., Sherman E., Richardet J.P., Bories P.N. Serum leptin levels in alcoholic liver cirrhosis: Relationship with gender, nutritional status, liver function and energy metabolism. Eur. J. Clin. Nutr. 2001;55:980–988. doi: 10.1038/sj.ejcn.1601255.
    1. Comlekci A., Akpinar H., Yesil S., Okan I., Ellidokuz E., Okan A., Ersoz G., Tankurt E., Batur Y. Serum leptin levels in patients with liver cirrhosis and chronic viral hepatitis. Scand. J. Gastroenterol. 2003;38:779–786.
    1. Attar B.M., Moore C.M., George M., Ion-Nedelcu N., Turbay R., Zachariah A., Ramadori G., Fareed J., Van Thiel D.H. Procalcitonin, and cytokines document a dynamic inflammatory state in non-infected cirrhotic patients with ascites. World J. Gastroenterol. 2014;20:2374–2382. doi: 10.3748/wjg.v20.i9.2374.
    1. Giannini E., Romagnoli P., Tenconi G.L., Botta F., Malfatti F., Chiarbonello B., Mamone M., Barreca T., Testa R. High ascitic fluid leptin levels in patients with decompensated liver cirrhosis and sterile ascites: Relationship with TNF-α levels. Dig. Dis. Sci. 2004;49:275–280. doi: 10.1023/B:DDAS.0000017451.48031.b6.
    1. Van Harmelen V., Reynisdottir S., Eriksson P., Thorne A., Hoffstedt J., Lonnqvist F., Arner P. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998;47:913–917. doi: 10.2337/diabetes.47.6.913.
    1. Nolte W., Wirtz M., Rossbach C., Leonhardt U., Buchwald A.B., Scholz K.H., Ramadori G. TIPS implantation raises leptin levels in patients with liver cirrhosis. Exp. Clin. Endocrinol. Diabetes. 2003;111:435–442. doi: 10.1055/s-2003-44291.
    1. Yang R.Z., Lee M.J., Hu H., Pray J., Wu H.B., Hansen B.C., Shuldiner A.R., Fried S.K., McLenithan J.C., Gong D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006;290:E1253–E1261. doi: 10.1152/ajpendo.00572.2004.
    1. Yamawaki H., Kuramoto J., Kameshima S., Usui T., Okada M., Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun. 2011;408:339–343. doi: 10.1016/j.bbrc.2011.04.039.
    1. Maruyama S., Shibata R., Kikuchi R., Izumiya Y., Rokutanda T., Araki S., Kataoka Y., Ohashi K., Daida H., Kihara S., et al. Fat-derived factor omentin stimulates endothelial cell function and ischemia-induced revascularization via endothelial nitric oxide synthase-dependent mechanism. J. Biol. Chem. 2012;287:408–417. doi: 10.1074/jbc.M111.261818.
    1. Yamawaki H., Tsubaki N., Mukohda M., Okada M., Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem. Biophys. Res. Commun. 2010;393:668–672. doi: 10.1016/j.bbrc.2010.02.053.
    1. Wiest R. Splanchnic and systemic vasodilation: The experimental models. J. Clin. Gastroenterol. 2007;41(Suppl. 3):S272–S287. doi: 10.1097/MCG.0b013e318157cb57.
    1. Laleman W., Landeghem L., Wilmer A., Fevery J., Nevens F. Portal hypertension: From pathophysiology to clinical practice. Liver Int. 2005;25:1079–1090. doi: 10.1111/j.1478-3231.2005.01163.x.
    1. Kukla M., Waluga M., Adamek B., Zalewska-Ziob M., Kasperczyk J., Gabriel A., Buldak R.J., Sobala-Szczygiel B., Kepa L., Ziora K., et al. Omentin serum concentration and hepatic expression in chronic hepatitis C patients-together or -apart? Pol. J. Pathol. 2015;66:231–238. doi: 10.5114/pjp.2015.54956.
    1. Kukla M., Waluga M., Zorniak M., Berdowska A., Wosiewicz P., Sawczyn T., Buldak R.J., Ochman M., Ziora K., Krzeminski T., et al. Serum omentin and vaspin levels in cirrhotic patients with and without portal vein thrombosis. World J. Gastroenterol. 2017;23:2613–2624. doi: 10.3748/wjg.v23.i14.2613.
    1. Dumic J., Dabelic S., Flogel M. Galectin-3: An open-ended story. Biochim. Biophys. Acta. 2006;1760:616–635. doi: 10.1016/j.bbagen.2005.12.020.
    1. Krautbauer S., Eisinger K., Hader Y., Buechler C. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice. Cytokine. 2014;69:263–271. doi: 10.1016/j.cyto.2014.06.016.
    1. Weigert J., Neumeier M., Wanninger J., Bauer S., Farkas S., Scherer M.N., Schnitzbauer A., Schaffler A., Aslanidis C., Scholmerich J., et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J. Clin. Endocrinol. Metab. 2010;95:1404–1411. doi: 10.1210/jc.2009-1619.
    1. Henderson N.C., Mackinnon A.C., Farnworth S.L., Poirier F., Russo F.P., Iredale J.P., Haslett C., Simpson K.J., Sethi T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl. Acad. Sci. USA. 2006;103:5060–5065. doi: 10.1073/pnas.0511167103.
    1. Santos J.C., Valentim I.B., de Araujo O.R., Ataide Tda R., Goulart M.O. Development of nonalcoholic hepatopathy: Contributions of oxidative stress and advanced glycation end products. Int. J. Mol. Sci. 2013;14:19846–19866. doi: 10.3390/ijms141019846.
    1. Iacobini C., Menini S., Ricci C., Blasetti Fantauzzi C., Scipioni A., Salvi L., Cordone S., Delucchi F., Serino M., Federici M., et al. Galectin-3 ablation protects mice from diet-induced NASH: A major scavenging role for galectin-3 in liver. J. Hepatol. 2011;54:975–983. doi: 10.1016/j.jhep.2010.09.020.
    1. Hsu D.K., Dowling C.A., Jeng K.C., Chen J.T., Yang R.Y., Liu F.T. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int. J. Cancer. 1999;81:519–526. doi: 10.1002/(SICI)1097-0215(19990517)81:4<519::AID-IJC3>;2-0.
    1. Weiskirchen R., Tacke F. Liver fibrosis: From pathogenesis to novel therapies. Dig. Dis. 2016;34:410–422. doi: 10.1159/000444556.
    1. Gudowska M., Gruszewska E., Cylwik B., Panasiuk A., Rogalska M., Flisiak R., Szmitkowski M., Chrostek L. Galectin-3 concentration in liver diseases. Ann. Clin. Lab. Sci. 2015;45:669–673.
    1. Ulu M., Alacacioglu A., Yuksel E., Pamukk B.O., Bozkaya G., Ari A., Yuksel A., Sop G., Alacacioglu I. Prognostic significance of serum galectin-3 levels in patients with hepatocellular cancer and chronic viral hepatitis. Saudi J. Gastroenterol. 2015;21:47–50. doi: 10.4103/1319-3767.151228.
    1. Muse E.D., Obici S., Bhanot S., Monia B.P., McKay R.A., Rajala M.W., Scherer P.E., Rossetti L. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Investig. 2004;114:232–239. doi: 10.1172/JCI200421270.
    1. Chen B.H., Song Y., Ding E.L., Roberts C.K., Manson J.E., Rifai N., Buring J.E., Gaziano J.M., Liu S. Circulating levels of resistin and risk of type 2 diabetes in men and women: Results from two prospective cohorts. Diabetes Care. 2009;32:329–334. doi: 10.2337/dc08-1625.
    1. Buechler C., Eisinger K., Krautbauer S. Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases. Inflamm. Allergy Drug Targets. 2013;12:391–402. doi: 10.2174/18715281113126660060.
    1. Bertolani C., Sancho-Bru P., Failli P., Bataller R., Aleffi S., DeFranco R., Mazzinghi B., Romagnani P., Milani S., Gines P., et al. Resistin as an intrahepatic cytokine: Overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am. J. Pathol. 2006;169:2042–2053. doi: 10.2353/ajpath.2006.060081.
    1. Shen C., Zhao C.Y., Wang W., Wang Y.D., Sun H., Cao W., Yu W.Y., Zhang L., Ji R., Li M., et al. The relationship between hepatic resistin overexpression and inflammation in patients with nonalcoholic steatohepatitis. BMC Gastroenterol. 2014;14:39. doi: 10.1186/1471-230X-14-39.
    1. Dong Z.X., Su L., Brymora J., Bird C., Xie Q., George J., Wang J.H. Resistin mediates the hepatic stellate cell phenotype. World J. Gastroenterol. 2013;19:4475–4485. doi: 10.3748/wjg.v19.i28.4475.
    1. Lee T.S., Lin C.Y., Tsai J.Y., Wu Y.L., Su K.H., Lu K.Y., Hsiao S.H., Pan C.C., Kou Y.R., Hsu Y.P., et al. Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages. Life Sci. 2009;84:97–104. doi: 10.1016/j.lfs.2008.11.004.
    1. Melone M., Wilsie L., Palyha O., Strack A., Rashid S. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J. Am. Coll. Cardiol. 2012;59:1697–1705. doi: 10.1016/j.jacc.2011.11.064.
    1. Sheng C.H., Di J., Jin Y., Zhang Y.C., Wu M., Sun Y., Zhang G.Z. Resistin is expressed in human hepatocytes and induces insulin resistance. Endocrine. 2008;33:135–143. doi: 10.1007/s12020-008-9065-y.
    1. Bahr M.J., Ockenga J., Boker K.H., Manns M.P., Tietge U.J. Elevated resistin levels in cirrhosis are associated with the proinflammatory state and altered hepatic glucose metabolism but not with insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2006;291:E199–E206. doi: 10.1152/ajpendo.00291.2005.
    1. Meng Z., Zhang Y., Wei Z., Liu P., Kang J., Ma D., Ke C., Chen Y., Luo J., Gong Z. High serum resistin associates with intrahepatic inflammation and necrosis: An index of disease severity for patients with chronic HBV infection. BMC Gastroenterol. 2017;17:6. doi: 10.1186/s12876-016-0558-5.
    1. Yagmur E., Trautwein C., Gressner A.M., Tacke F. Resistin serum levels are associated with insulin resistance, disease severity, clinical complications, and prognosis in patients with chronic liver diseases. Am. J. Gastroenterol. 2006;101:1244–1252. doi: 10.1111/j.1572-0241.2006.00543.x.
    1. Dahl T.B., Haukeland J.W., Yndestad A., Ranheim T., Gladhaug I.P., Damas J.K., Haaland T., Loberg E.M., Arntsen B., Birkeland K., et al. Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down-regulated in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2010;95:3039–3047. doi: 10.1210/jc.2009-2148.
    1. Terra X., Auguet T., Quesada I., Aguilar C., Luna A.M., Hernandez M., Sabench F., Porras J.A., Martinez S., Lucas A., et al. Increased levels and adipose tissue expression of visfatin in morbidly obese women: The relationship with pro-inflammatory cytokines. Clin. Endocrinol. 2012;77:691–698. doi: 10.1111/j.1365-2265.2011.04327.x.
    1. Berndt J., Kloting N., Kralisch S., Kovacs P., Fasshauer M., Schon M.R., Stumvoll M., Bluher M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 2005;54:2911–2916. doi: 10.2337/diabetes.54.10.2911.
    1. Garten A., Petzold S., Barnikol-Oettler A., Korner A., Thasler W.E., Kratzsch J., Kiess W., Gebhardt R. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem. Biophys. Res. Commun. 2010;391:376–381. doi: 10.1016/j.bbrc.2009.11.066.
    1. Dahl T.B., Holm S., Aukrust P., Halvorsen B. Visfatin/NAMPT: A multifaceted molecule with diverse roles in physiology and pathophysiology. Annu. Rev. Nutr. 2012;32:229–243. doi: 10.1146/annurev-nutr-071811-150746.
    1. Choi Y.J., Choi S.E., Ha E.S., Kang Y., Han S.J., Kim D.J., Lee K.W., Kim H.J. Extracellular visfatin activates gluconeogenesis in HepG2 cells through the classical PKA/CREB-dependent pathway. Horm. Metab. Res. 2014;46:233–239. doi: 10.1055/s-0034-1370907.
    1. Choi Y.J., Choi S.E., Ha E.S., Kang Y., Han S.J., Kim D.J., Lee K.W., Kim H.J. Involvement of visfatin in palmitate-induced upregulation of inflammatory cytokines in hepatocytes. Metabolism. 2011;60:1781–1789. doi: 10.1016/j.metabol.2011.05.003.
    1. Liang N.L., Men R., Zhu Y., Yuan C., Wei Y., Liu X., Yang L. Visfatin: An adipokine activator of rat hepatic stellate cells. Mol. Med. Rep. 2015;11:1073–1078. doi: 10.3892/mmr.2014.2795.
    1. Nan Y.M., Kong L.B., Ren W.G., Wang R.Q., Du J.H., Li W.C., Zhao S.X., Zhang Y.G., Wu W.J., Di H.L., et al. Activation of peroxisome proliferator activated receptor α ameliorates ethanol mediated liver fibrosis in mice. Lipids Health Dis. 2013;12:11. doi: 10.1186/1476-511X-12-11.
    1. De Boer J.F., Bahr M.J., Boker K.H., Manns M.P., Tietge U.J. Plasma levels of PBEF/Nampt/visfatin are decreased in patients with liver cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;296:G196–G201. doi: 10.1152/ajpgi.00029.2008.
    1. Sun Y., Zhu S., Wu Z., Huang Y., Liu C., Tang S., Wei L. Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma. Oncotarget. 2017;8:23427–23435. doi: 10.18632/oncotarget.15080.
    1. Wei X.L. The relationship between serum visfatin and the progress of chronic viral hepatitis B cirrhosis. Eur. Rev. Med. Pharmacol. Sci. 2017;21:297–301.
    1. Hammerich L., Tacke F. Interleukins in chronic liver disease: Lessons learned from experimental mouse models. Clin. Exp. Gastroenterol. 2014;7:297–306.
    1. Klover P.J., Zimmers T.A., Koniaris L.G., Mooney R.A. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003;52:2784–2789. doi: 10.2337/diabetes.52.11.2784.
    1. Wunderlich F.T., Strohle P., Konner A.C., Gruber S., Tovar S., Bronneke H.S., Juntti-Berggren L., Li L.S., van Rooijen N., Libert C., et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010;12:237–249. doi: 10.1016/j.cmet.2010.06.011.
    1. Klein C., Wustefeld T., Assmus U., Roskams T., Rose-John S., Muller M., Manns M.P., Ernst M., Trautwein C. The IL-6-gp130-STAT3 pathway in hepatocytes triggers liver protection in T cell-mediated liver injury. J. Clin. Investig. 2005;115:860–869. doi: 10.1172/JCI23640.
    1. Kovalovich K., DeAngelis R.A., Li W., Furth E.E., Ciliberto G., Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology. 2000;31:149–159. doi: 10.1002/hep.510310123.
    1. Wuestefeld T., Klein C., Streetz K.L., Beraza N., Scholmerich J., Burgart L.J., Zender L., Kubicka S., Baskin-Bey E., Gores G.J., et al. Lack of GP130 expression results in more bacterial infection and higher mortality during chronic cholestasis in mice. Hepatology. 2005;42:1082–1090. doi: 10.1002/hep.20912.
    1. Andus T., Bauer J., Gerok W. Effects of cytokines on the liver. Hepatology. 1991;13:364–375. doi: 10.1002/hep.1840130226.
    1. Goral V., Atalay R., Kucukoner M. Insulin resistance in liver cirrhosis. Hepatogastroenterology. 2010;57:309–315.
    1. Mortensen C., Andersen O., Krag A., Bendtsen F., Moller S. High-sensitivity C-reactive protein levels predict survival and are related to haemodynamics in alcoholic cirrhosis. Eur. J. Gastroenterol. Hepatol. 2012;24:619–626. doi: 10.1097/MEG.0b013e328351db6e.
    1. Lemmers A., Gustot T., Durnez A., Evrard S., Moreno C., Quertinmont E., Vercruysse V., Demetter P., Franchimont D., Le Moine O., et al. An inhibitor of interleukin-6 trans-signalling, sgp130, contributes to impaired acute phase response in human chronic liver disease. Clin. Exp. Immunol. 2009;156:518–527. doi: 10.1111/j.1365-2249.2009.03916.x.
    1. Zuwala-Jagiello J., Pazgan-Simon M., Simon K., Warwas M. Advanced oxidation protein products and inflammatory markers in liver cirrhosis: A comparison between alcohol-related and HCV-related cirrhosis. Acta Biochim. Pol. 2011;58:59–65.
    1. Rao R.K., Seth A., Sheth P. Recent Advances in Alcoholic Liver Disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;286:G881–G884. doi: 10.1152/ajpgi.00006.2004.
    1. Deviere J., Content J., Denys C., Vandenbussche P., Schandene L., Wybran J., Dupont E. Excessive in vitro bacterial lipopolysaccharide-induced production of monokines in cirrhosis. Hepatology. 1990;11:628–634. doi: 10.1002/hep.1840110416.
    1. Perrin-Cocon L., Agaugue S., Diaz O., Vanbervliet B., Dollet S., Guironnet-Paquet A., Andre P., Lotteau V. Th1 disabled function in response to TLR4 stimulation of monocyte-derived DC from patients chronically-infected by hepatitis C virus. PLoS ONE. 2008;3:e2260. doi: 10.1371/journal.pone.0002260.
    1. Luo M., Li L., Yang E.N., Dai C.Y., Liang S.R., Cao W.K. Correlation between interleukin-6 and ammonia in patients with overt hepatic encephalopathy due to cirrhosis. Clin. Res. Hepatol. Gastroenterol. 2013;37:384–390. doi: 10.1016/j.clinre.2012.08.007.
    1. Kim J.H., Bachmann R.A., Chen J. Interleukin-6 and insulin resistance. Vitam. Horm. 2009;80:613–633.
    1. Giron-Gonzalez J.A., Martinez-Sierra C., Rodriguez-Ramos C., Macias M.A., Rendon P., Diaz F., Fernandez-Gutierrez C., Martin-Herrera L. Implication of inflammation-related cytokines in the natural history of liver cirrhosis. Liver Int. 2004;24:437–445. doi: 10.1111/j.1478-3231.2004.0951.x.
    1. Dirchwolf M., Podhorzer A., Marino M., Shulman C., Cartier M., Zunino M., Paz S., Munoz A., Bocassi A., Gimenez J., et al. Immune dysfunction in cirrhosis: Distinct cytokines phenotypes according to cirrhosis severity. Cytokine. 2016;77:14–25. doi: 10.1016/j.cyto.2015.10.006.
    1. Rourke J.L., Dranse H.J., Sinal C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev. 2013;14:245–262. doi: 10.1111/obr.12009.

Source: PubMed

3
Sottoscrivi