Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome

Juan de Toro-Martín, Benoit J Arsenault, Jean-Pierre Després, Marie-Claude Vohl, Juan de Toro-Martín, Benoit J Arsenault, Jean-Pierre Després, Marie-Claude Vohl

Abstract

The translation of the growing increase of findings emerging from basic nutritional science into meaningful and clinically relevant dietary advices represents nowadays one of the main challenges of clinical nutrition. From nutrigenomics to deep phenotyping, many factors need to be taken into account in designing personalized and unbiased nutritional solutions for individuals or population sub-groups. Likewise, a concerted effort among basic, clinical scientists and health professionals will be needed to establish a comprehensive framework allowing the implementation of these new findings at the population level. In a world characterized by an overwhelming increase in the prevalence of obesity and associated metabolic disturbances, such as type 2 diabetes and cardiovascular diseases, tailored nutrition prescription represents a promising approach for both the prevention and management of metabolic syndrome. This review aims to discuss recent works in the field of precision nutrition analyzing most relevant aspects affecting an individual response to lifestyle/nutritional interventions. Latest advances in the analysis and monitoring of dietary habits, food behaviors, physical activity/exercise and deep phenotyping will be discussed, as well as the relevance of novel applications of nutrigenomics, metabolomics and microbiota profiling. Recent findings in the development of precision nutrition are highlighted. Finally, results from published studies providing examples of new avenues to successfully implement innovative precision nutrition approaches will be reviewed.

Keywords: deep phenotyping; gut microbiota; metabolomics; nutrigenomics; physical activity; precision nutrition.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The precision nutrition plate. A schematic representation of the main factors worth to consider when approaching precision nutrition.
Figure 2
Figure 2
The three levels of precision nutrition according to the International Society of Nutrigenetics/Nutrigenomics (ISNN) [29].
Figure 3
Figure 3
Precision nutrition features and their relationships. PA: physical activity.

References

    1. Betts J.A., Gonzalez J.T. Personalised nutrition: What makes you so special? Nutr. Bull. 2016;41:353–359. doi: 10.1111/nbu.12238.
    1. McMahon G., Taylor A.E., Davey Smith G., Munafò M.R. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption. PLoS ONE. 2014;9:e103448. doi: 10.1371/journal.pone.0103448.
    1. Valleé Marcotte B., Cormier H., Guénard F., Rudkowska I., Lemieux S., Couture P., Vohl M.C. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J. Nutrigenet. Nutrigenomics. 2016;9:1–11. doi: 10.1159/000446024.
    1. Ouellette C., Rudkowska I., Lemieux S., Lamarche B., Couture P., Vohl M.-C. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: A clinical trial. Lipids Health Dis. 2014;13:86. doi: 10.1186/1476-511X-13-86.
    1. Rudkowska I., Pérusse L., Bellis C., Blangero J., Després J.-P., Bouchard C., Vohl M.-C. Interaction between Common Genetic Variants and Total Fat Intake on Low-Density Lipoprotein Peak Particle Diameter: A Genome-Wide Association Study. J. Nutrigenet. Nutrigenomics. 2015;8:44–53. doi: 10.1159/000431151.
    1. Tremblay B.L., Cormier H., Rudkowska I., Lemieux S., Couture P., Vohl M.-C. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: A clinical trial. Lipids Health Dis. 2015;14:12. doi: 10.1186/s12944-015-0009-2.
    1. Palatini P., Ceolotto G., Ragazzo F., Dorigatti F., Saladini F., Papparella I., Mos L., Zanata G., Santonastaso M. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J. Hypertens. 2009;27:1594–1601. doi: 10.1097/HJH.0b013e32832ba850.
    1. Ahmadi K.R., Andrew T. Opportunism: A panacea for implementation of whole-genome sequencing studies in nutrigenomics research? Genes Nutr. 2014;9:387. doi: 10.1007/s12263-014-0387-5.
    1. Özdemir V., Kolker E. Precision Nutrition 4.0: A Big Data and Ethics Foresight Analysis—Convergence of Agrigenomics, Nutrigenomics, Nutriproteomics, and Nutrimetabolomics. OMIS J. Integr. Biol. 2016;20:69–75. doi: 10.1089/omi.2015.0193.
    1. Rasinpera H., Savilahti E., Enattah N.S., Kuokkanen M., Tötterman N., Lindahl H., Järvelä I., Kolho K.-L. A genetic test which can be used to diagnose adult-type hypolactasia in children. Gut. 2004;53:1571–1576. doi: 10.1136/gut.2004.040048.
    1. Ludvigsson J.F., Bai J.C., Biagi F., Card T.R., Ciacci C., Ciclitira P.J., Green P.H.R., Hadjivassiliou M., Holdoway A., van Heel D.A., et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63:1210–1228. doi: 10.1136/gutjnl-2013-306578.
    1. DiLella A.G., Huang W.M., Woo S.L. Screening for phenylketonuria mutations by DNA amplification with the polymerase chain reaction. Lancet. 1988;1:497–499. doi: 10.1016/S0140-6736(88)91295-0.
    1. Cornelis M.C., El-Sohemy A., Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007;86:240–244.
    1. Cornelis M.C., El-Sohemy A., Kabagambe E.K., Campos H. Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction. JAMA. 2006;295:1135. doi: 10.1001/jama.295.10.1135.
    1. Corella D., Peloso G., Arnett D.K., Demissie S., Cupples L.A., Tucker K., Lai C.-Q., Parnell L.D., Coltell O., Lee Y.-C., et al. APOA2, Dietary Fat, and Body Mass Index. Arch. Intern. Med. 2009;169:1897. doi: 10.1001/archinternmed.2009.343.
    1. Corella D., Tai E.S., Sorlí J.V., Chew S.K., Coltell O., Sotos-Prieto M., García-Rios A., Estruch R., Ordovas J.M. Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: Replication of a gene-saturated fat interaction. Int. J. Obes. (Lond.) 2011;35:666–675. doi: 10.1038/ijo.2010.187.
    1. Giner V., Poch E., Bragulat E., Oriola J., González D., Coca A., De La Sierra A. Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension. 2000;35:512–517. doi: 10.1161/01.HYP.35.1.512.
    1. Poch E., González D., Giner V., Bragulat E., Coca A., de La Sierra A. Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension. 2001;38:1204–1209. doi: 10.1161/hy1101.099479.
    1. Goni L., Cuervo M., Milagro F.I., Martínez J.A. A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr. 2015;10:1–10. doi: 10.1007/s12263-014-0445-z.
    1. Rukh G., Sonestedt E., Melander O., Hedblad B., Wirfält E., Ericson U., Orho-Melander M. Genetic susceptibility to obesity and diet intakes: Association and interaction analyses in the Malmö Diet and Cancer Study. Genes Nutr. 2013;8:535–547. doi: 10.1007/s12263-013-0352-8.
    1. Olsen N.J., Ängquist L., Larsen S.C., Linneberg A., Skaaby T., Husemoen L.L.N., Toft U., Tjønneland A., Halkjær J., Hansen T., et al. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference. Am. J. Clin. Nutr. 2016;104:816–826. doi: 10.3945/ajcn.115.122820.
    1. Qi Q., Chu A.Y., Kang J.H., Jensen M.K., Curhan G.C., Pasquale L.R., Ridker P.M., Hunter D.J., Willett W.C., Rimm E.B., et al. Sugar-Sweetened Beverages and Genetic Risk of Obesity. N. Engl. J. Med. 2012;367:1387–1396. doi: 10.1056/NEJMoa1203039.
    1. Brunkwall L., Chen Y., Hindy G., Rukh G., Ericson U., Barroso I., Johansson I., Franks P.W., Orho-Melander M., Renstrom F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am. J. Clin. Nutr. 2016;104:809–815. doi: 10.3945/ajcn.115.126052.
    1. Qi Q., Chu A.Y., Kang J.H., Huang J., Rose L.M., Jensen M.K., Liang L., Curhan G.C., Pasquale L.R., Wiggs J.L., et al. Fried food consumption, genetic risk, and body mass index: Gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610. doi: 10.1136/bmj.g1610.
    1. Casas-Agustench P., Arnett D.K., Smith C.E., Lai C.-Q., Parnell L.D., Borecki I.B., Frazier-Wood A.C., Allison M., Chen Y.-D.I., Taylor K.D., et al. Saturated Fat Intake Modulates the Association between an Obesity Genetic Risk Score and Body Mass Index in Two US Populations. J. Acad. Nutr. Diet. 2014;114:1954–1966. doi: 10.1016/j.jand.2014.03.014.
    1. Koochakpoor G., Daneshpour M.S., Mirmiran P., Hosseini S.A., Hosseini-Esfahani F., Sedaghatikhayat B., Azizi F. The effect of interaction between Melanocortin-4 receptor polymorphism and dietary factors on the risk of metabolic syndrome. Nutr. Metab. (Lond.) 2016;13:35. doi: 10.1186/s12986-016-0092-z.
    1. Azizi F., Ghanbarian A., Momenan A.A., Hadaegh F., Mirmiran P., Hedayati M., Mehrabi Y., Zahedi-Asl S. Tehran Lipid and Glucose Study Group. Prevention of non-communicable disease in a population in nutrition transition: Tehran Lipid and Glucose Study phase II. Trials. 2009;10:5. doi: 10.1186/1745-6215-10-5.
    1. Nettleton J.A., Follis J.L., Ngwa J.S., Smith C.E., Ahmad S., Tanaka T., Wojczynski M.K., Voortman T., Lemaitre R.N., Kristiansson K., et al. Gene x dietary pattern interactions in obesity: Analysis of up to 68 317 adults of European ancestry. Hum. Mol. Genet. 2015;24:4728–4738. doi: 10.1093/hmg/ddv186.
    1. Ferguson L.R., De Caterina R., Görman U., Allayee H., Kohlmeier M., Prasad C., Choi M.S., Curi R., de Luis D.A., Gil Á., et al. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. J. Nutrigenet. Nutrigenomics. 2016;9:12–27. doi: 10.1159/000445350.
    1. Allison D.B., Bassaganya-Riera J., Burlingame B., Brown A.W., le Coutre J., Dickson S.L., van Eden W., Garssen J., Hontecillas R., Khoo C.S.H., et al. Goals in Nutrition Science 2015–2020. Front. Nutr. 2015;2:1–13. doi: 10.3389/fnut.2015.00026.
    1. Corella D., Coltell O., Mattingley G., Sorlí J.V., Ordovas J.M. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: A guide for upcoming studies and implementations. Expert Rev. Mol. Diagn. 2017;17:495–513. doi: 10.1080/14737159.2017.1311208.
    1. Srinivasan B., Lee S., Erickson D. Precision nutrition—Review of methods for point-of-care assessment of nutritional status. Curr. Opin. Biotechnol. 2017;44:103–108. doi: 10.1016/j.copbio.2016.12.001.
    1. Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M., et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–1095. doi: 10.1016/j.cell.2015.11.001.
    1. Wolever T.M.S. Personalized nutrition by prediction of glycaemic responses: Fact or fantasy? Eur. J. Clin. Nutr. 2016;70:411–413. doi: 10.1038/ejcn.2016.31.
    1. Ohlhorst S.D., Russell R., Bier D., Klurfeld D.M., Li Z., Mein J.R., Milner J., Ross A.C., Stover P., Konopka E. Nutrition research to affect food and a healthy lifespan. Adv. Nutr. Int. Rev. J. 2013;4:579–584. doi: 10.3945/an.113.004176.
    1. Loos R.J.F., Janssens A.C.J.W. Predicting Polygenic Obesity Using Genetic Information. Cell Metab. 2017;25:535–543. doi: 10.1016/j.cmet.2017.02.013.
    1. Hebert J.R., Frongillo E.A., Adams S.A., Turner-McGrievy G.M., Hurley T.G., Miller D.R., Ockene I.S. Perspective: Randomized Controlled Trials Are Not a Panacea for Diet-Related Research. Adv. Nutr. An Int. Rev. J. 2016;7:423–432. doi: 10.3945/an.115.011023.
    1. Siebelink E., Geelen A., de Vries J.H.M. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br. J. Nutr. 2011;106:274–281. doi: 10.1017/S0007114511000067.
    1. Schaefer E.J., Augustin J.L., Schaefer M.M., Rasmussen H., Ordovas J.M., Dallal G.E., Dwyer J.T. Lack of efficacy of a food-frequency questionnaire in assessing dietary macronutrient intakes in subjects consuming diets of known composition. Am. J. Clin. Nutr. 2000;71:746–751.
    1. Archer E., Pavela G., Lavie C.J. The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines. Mayo Clin. Proc. 2015;90:911–926. doi: 10.1016/j.mayocp.2015.04.009.
    1. Shim J.-S., Oh K., Kim H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health. 2014;36:e2014009. doi: 10.4178/epih/e2014009.
    1. Schroder H., Fito M., Estruch R., Martinez-Gonzalez M.A., Corella D., Salas-Salvado J., Lamuela-Raventos R., Ros E., Salaverria I., Fiol M., et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011;141:1140–1145. doi: 10.3945/jn.110.135566.
    1. Martínez-González M.A., García-Arellano A., Toledo E., Salas-Salvadó J., Buil-Cosiales P., Corella D., Covas M.I., Schröder H., Arós F., Gómez-Gracia E., et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE. 2012;7:e43134. doi: 10.1371/journal.pone.0043134.
    1. Sotos-Prieto M., Moreno-Franco B., Ordovás J., León M., Casasnovas J., Peñalvo J. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: The Mediterranean Lifestyle (MEDLIFE) index. Public Health Nutr. 2015;18:959–967. doi: 10.1017/S1368980014001360.
    1. Martínez-González M.A., Fernández-Jarne E., Serrano-Martínez M., Wright M., Gomez-Gracia E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur. J. Clin. Nutr. 2004;58:1550–1552. doi: 10.1038/sj.ejcn.1602004.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. McCullough M.L., Feskanich D., Stampfer M.J., Giovannucci E.L., Rimm E.B., Hu F.B., Spiegelman D., Hunter D.J., Colditz G.A., Willett W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002;76:1261–1271.
    1. Fung T.T., McCullough M.L., Newby P.K., Manson J.E., Meigs J.B., Rifai N., Willett W.C., Hu F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005;82:163–173.
    1. Sevilla-Villanueva B., Gibert K., Sanchez-Marre M., Fito M., Covas M.-I. Evaluation of Adherence to Nutritional Intervention through Trajectory Analysis. IEEE J. Biomed. Heal. Inform. 2017;21:628–634. doi: 10.1109/JBHI.2016.2634698.
    1. Sevilla-Villanueva B., Gibert K., Sànchez-Marrè M. Identifying Nutritional Patterns through Integrative Multiview Clustering. Artif. Intell. Res. Dev. 2015;277:185.
    1. Konstantinidou V., Covas M.-I., Munoz-Aguayo D., Khymenets O., de la Torre R., Saez G., Tormos M.d.C., Toledo E., Marti A., Ruiz-Gutierrez V., et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. FASEB J. 2010;24:2546–2557. doi: 10.1096/fj.09-148452.
    1. Dhurandhar N.V., Schoeller D., Brown A.W., Heymsfield S.B., Thomas D., Sørensen T.I.A., Speakman J.R., Jeansonne M., Allison D.B. Energy balance measurement: When something is not better than nothing. Int. J. Obes. 2015;39:1109–1113. doi: 10.1038/ijo.2014.199.
    1. Nybacka S., Bertéus Forslund H., Wirfält E., Larsson I., Ericson U., Warensjö Lemming E., Bergström G., Hedblad B., Winkvist A., Lindroos A.K. Comparison of a web-based food record tool and a food-frequency questionnaire and objective validation using the doubly labelled water technique in a Swedish middle-aged population. J. Nutr. Sci. 2016;5:e39. doi: 10.1017/jns.2016.29.
    1. Bergström G., Berglund G., Blomberg A., Brandberg J., Engström G., Engvall J., Eriksson M., de Faire U., Flinck A., Hansson M.G., et al. The Swedish CArdioPulmonary BioImage Study: Objectives and design. J. Intern. Med. 2015;278:645–659. doi: 10.1111/joim.12384.
    1. Martin C.K., Han H., Coulon S.M., Allen H.R., Champagne C.M., Anton S.D. A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method. Br. J. Nutr. 2009;101:446. doi: 10.1017/S0007114508027438.
    1. Martin C.K., Correa J.B., Han H., Allen H.R., Rood J.C., Champagne C.M., Gunturk B.K., Bray G.A. Validity of the Remote Food Photography Method (RFPM) for Estimating Energy and Nutrient Intake in Near Real-Time. Obesity. 2012;20:891–899. doi: 10.1038/oby.2011.344.
    1. Dong Y., Hoover A., Scisco J., Muth E. A New Method for Measuring Meal Intake in Humans via Automated Wrist Motion Tracking. Appl. Psychophysiol. Biofeedback. 2012;37:205–215. doi: 10.1007/s10484-012-9194-1.
    1. Schoeller D.A., Thomas D., Archer E., Heymsfield S.B., Blair S.N., Goran M.I., Hill J.O., Atkinson R.L., Corkey B.E., Foreyt J., et al. Self-report-based estimates of energy intake offer an inadequate basis for scientific conclusions. Am. J. Clin. Nutr. 2013;97:1413–1415. doi: 10.3945/ajcn.113.062125.
    1. Mattfeld R.S., Muth E.R., Hoover A. Measuring the consumption of individual solid and liquid bites using a table embedded scale during unrestricted eating. IEEE J. Biomed. Heal. Informatics. 2016 doi: 10.1109/JBHI.2016.2632621.
    1. Fontana J.M., Farooq M., Sazonov E. Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive Behavior. IEEE Trans. Biomed. Eng. 2014;61:1772–1779. doi: 10.1109/TBME.2014.2306773.
    1. Potter G.D.M., Cade J.E., Grant P.J., Hardie L.J. Nutrition and the circadian system. Br. J. Nutr. 2016;116:434–442. doi: 10.1017/S0007114516002117.
    1. Garaulet M., Vera B., Bonnet-Rubio G., Gómez-Abellán P., Lee Y.-C., Ordovás J.M. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: The ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am. J. Clin. Nutr. 2016;104:1160–1166. doi: 10.3945/ajcn.116.134528.
    1. Garaulet M., Corbalán-Tutau M.D., Madrid J.A., Baraza J.C., Parnell L.D., Lee Y.-C., Ordovas J.M. PERIOD2 Variants Are Associated with Abdominal Obesity, Psycho-Behavioral Factors, and Attrition in the Dietary Treatment of Obesity. J. Am. Diet. Assoc. 2010;110:917–921. doi: 10.1016/j.jada.2010.03.017.
    1. Gomez-Delgado F., Garcia-Rios A., Alcala-Diaz J.F., Rangel-Zuñiga O., Delgado-Lista J., Yubero-Serrano E.M., Lopez-Moreno J., Tinahones F.J., Ordovas J.M., Garaulet M., et al. Chronic consumption of a low-fat diet improves cardiometabolic risk factors according to the CLOCK gene in patients with coronary heart disease. Mol. Nutr. Food Res. 2015;59:2556–2564. doi: 10.1002/mnfr.201500375.
    1. Dashti H.S., Smith C.E., Lee Y.-C., Parnell L.D., Lai C.-Q., Arnett D.K., Ordovás J.M., Garaulet M. CRY1 circadian gene variant interacts with carbohydrate intake for insulin resistance in two independent populations: Mediterranean and North American. Chronobiol. Int. 2014;31:660–667. doi: 10.3109/07420528.2014.886587.
    1. Asher G., Sassone-Corsi P. Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell. 2015;161:84–92. doi: 10.1016/j.cell.2015.03.015.
    1. Oike H., Oishi K., Kobori M. Nutrients, Clock Genes, and Chrononutrition. Curr. Nutr. Rep. 2014;3:204–212. doi: 10.1007/s13668-014-0082-6.
    1. Hill J.O., Wyatt H.R., Peters J.C. Energy balance and obesity. Circulation. 2012;126:126–132. doi: 10.1161/CIRCULATIONAHA.111.087213.
    1. Bouchard C., Blair S.N., Church T.S., Earnest C.P., Hagberg J.M., H?kkinen K., Jenkins N.T., Karavirta L., Kraus W.E., Leon A.S., et al. Adverse Metabolic Response to Regular Exercise: Is It a Rare or Common Occurrence? PLoS ONE. 2012;7:e37887. doi: 10.1371/journal.pone.0037887.
    1. de Lannoy L., Clarke J., Stotz P.J., Ross R., Senn S., Meyer T. Effects of intensity and amount of exercise on measures of insulin and glucose: Analysis of inter-individual variability. PLoS ONE. 2017;12:e0177095. doi: 10.1371/journal.pone.0177095.
    1. Atkinson G., Batterham A.M. True and false interindividual differences in the physiological response to an intervention. Exp. Physiol. 2015;100:577–588. doi: 10.1113/EP085070.
    1. Qi Q., Li Y., Chomistek A.K., Kang J.H., Curhan G.C., Pasquale L.R., Willett W.C., Rimm E.B., Hu F.B., Qi L. Television Watching, Leisure Time Physical Activity, and the Genetic Predisposition in Relation to Body Mass Index in Women and Men. Circulation. 2012;126:1821–1827. doi: 10.1161/CIRCULATIONAHA.112.098061.
    1. Loos R.J.F., Yeo G.S.H. The bigger picture of FTO: The first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 2014;10:51–61. doi: 10.1038/nrendo.2013.227.
    1. Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., Freathy R.M., Lindgren C.M., Perry J.R.B., Elliott K.S., Lango H., Rayner N.W., et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. doi: 10.1126/science.1141634.
    1. Vimaleswaran K.S., Li S., Zhao J.H., Luan J., Bingham S.A., Khaw K.-T., Ekelund U., Wareham N.J., Loos R.J. Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene. Am. J. Clin. Nutr. 2009;90:425–428. doi: 10.3945/ajcn.2009.27652.
    1. Li S., Zhao J.H., Luan J., Ekelund U., Luben R.N., Khaw K.T., Wareham N.J., Loos R.J.F. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med. 2010;7:e1000332. doi: 10.1371/journal.pmed.1000332.
    1. Ahmad S., Rukh G., Varga T. V., Ali A., Kurbasic A., Shungin D., Ericson U., Koivula R.W., Chu A.Y., Rose L.M., et al. Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry. PLoS Genet. 2013;9:e1003607. doi: 10.1371/journal.pgen.1003607.
    1. Graff M., Scott R.A., Justice A.E., Young K.L., Feitosa M.F., Barata L., Winkler T.W., Chu A.Y., Mahajan A., Hadley D., et al. Genome-wide physical activity interactions in adiposity―A meta-analysis of 200,452 adults. PLoS Genet. 2017;13:e1006528. doi: 10.1371/journal.pgen.1006528.
    1. Scott R.A., Chu A.Y., Grarup N., Manning A.K., Hivert M.-F., Shungin D., Tönjes A., Yesupriya A., Barnes D., Bouatia-Naji N., et al. No Interactions Between Previously Associated 2-h Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels. Diabetes. 2012;61:1291–1296. doi: 10.2337/db11-0973.
    1. Moon J.-Y., Wang T., Sofer T., North K.E., Isasi C.R., Cai J., Gellman M.D., Moncrieft A.E., Sotres-Alvarez D., Argos M., et al. Gene-environment Interaction Analysis Reveals Evidence for Independent Influences of Physical Activity and Sedentary Behavior on Obesity: Results From the Hispanic Community Health Study/study of Latinos (HCHS/SOL) Circulation. 2017;135:AMP027.
    1. Celis-Morales C., Marsaux C.F.M., Livingstone K.M., Navas-Carretero S., San-Cristobal R., O’donovan C.B., Forster H., Woolhead C., Fallaize R., Macready A.L., et al. Physical activity attenuates the effect of the FTO genotype on obesity traits in European adults: The Food4Me study. Obesity. 2016;24:962–969. doi: 10.1002/oby.21422.
    1. Andreasen C.H., Stender-Petersen K.L., Mogensen M.S., Torekov S.S., Wegner L., Andersen G., Nielsen A.L., Albrechtsen A., Borch-Johnsen K., Rasmussen S.S., et al. Low physical activity acentuates the effect of rs9939609 polymorphism. Diabetes. 2008;57:95–101. doi: 10.2337/db07-0910.
    1. Goodman E., Evans W.D., DiPietro L. Preliminary Evidence for School-Based Physical Activity Policy Needs in Washington, DC. J. Phys. Act. Heal. 2012;9:124–128. doi: 10.1123/jpah.9.1.124.
    1. Cadenas-Sanchez C., Ruiz J.R., Labayen I., Huybrechts I., Manios Y., Gonz??lez-Gross M., Breidenassel C., Kafatos A., De Henauw S., Vanhelst J., et al. Prevalence of Metabolically Healthy but Overweight/Obese Phenotype and Its Association With Sedentary Time, Physical Activity, and Fitness. J. Adolesc. Heal. 2016 doi: 10.1016/j.jadohealth.2017.01.018.
    1. Cameron N., Godino J., Nichols J.F., Wing D., Hill L., Patrick K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese Latino and non-Latino adults. Int. J. Obes. 2017 doi: 10.1038/ijo.2017.49.
    1. Jeran S., Steinbrecher A., Pischon T. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: A systematic review. Int. J. Obes. 2016;40:1187–1197. doi: 10.1038/ijo.2016.14.
    1. Westerterp K.R. Reliable assessment of physical activity in disease. Curr. Opin. Clin. Nutr. Metab. Care. 2014;17:401–406. doi: 10.1097/MCO.0000000000000080.
    1. Ross R., Hudson R., Stotz P.J., Lam M. Effects of Exercise Amount and Intensity on Abdominal Obesity and Glucose Tolerance in Obese Adults. Ann. Intern. Med. 2015;162:325. doi: 10.7326/M14-1189.
    1. Livingstone K.M., Celis-Morales C., Navas-Carretero S., San-Cristoba R., MacReady A.L., Fallaize R., Forster H., Woolhead C., O’Donovan C.B., Marsaux C.F.M., et al. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: The Food4Me Study. Am. J. Clin. Nutr. 2016;104:288–297. doi: 10.3945/ajcn.115.129049.
    1. Prince S.A., Adamo K.B., Hamel M., Hardt J., Connor Gorber S., Tremblay M., O’Brien W., Bassett D., Schmitz K., Emplaincourt P. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Thompson D., Peacock O., Western M., Batterham A.M. Multidimensional physical activity: An opportunity, not a problem. Exerc. Sport Sci. Rev. 2015;43:67–74. doi: 10.1249/JES.0000000000000039.
    1. Tracy R.P. “Deep phenotyping”: Characterizing populations in the era of genomics and systems biology. Curr. Opin. Lipidol. 2008;19:151–157. doi: 10.1097/MOL.0b013e3282f73893.
    1. Kramer C.K., Zinman B., Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann. Intern. Med. 2013;159:758–769. doi: 10.7326/0003-4819-159-11-201312030-00008.
    1. Tchernof A., Després J.-P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013;93:359–404. doi: 10.1152/physrev.00033.2011.
    1. Sam S., Haffner S., Davidson M.H.E. Al Predicts Increased Visceral Fat in Subjects With Type 2 Diabetes. Diabetes. 2009;32:1916–1920. doi: 10.2337/dc09-0412.
    1. Lemieux I., Poirier P., Bergeron J., Alméras N., Lamarche B., Cantin B., Dagenais G.R., Després J.-P. Hypertriglyceridemic waist: A useful screening phenotype in preventive cardiology? Can. J. Cardiol. 2007;23(Suppl B):23B–31B. doi: 10.1016/S0828-282X(07)71007-3.
    1. Arsenault B.J., Lemieux I., Despres J.-P., Wareham N.J., Kastelein J.J.P., Khaw K.-T., Boekholdt S.M. The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: Results from the EPIC-Norfolk Prospective Population Study. Can. Med. Assoc. J. 2010;182:1427–1432. doi: 10.1503/cmaj.091276.
    1. Guénard F., Tchernof A., Deshaies Y., Pérusse L., Biron S., Lescelleur O., Biertho L., Marceau S., Vohl M.-C. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol. Genomics. 2014;46:216–222. doi: 10.1152/physiolgenomics.00160.2013.
    1. Macartney-Coxson D., Benton M.C., Blick R., Stubbs R.S., Hagan R.D., Langston M.A. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin. Epigenetics. 2017;9:48. doi: 10.1186/s13148-017-0344-4.
    1. Guénard F., Deshaies Y., Hould F.-S., Lebel S., Tchernof A., Marceau P., Vohl M.-C. Use of Blood as a Surrogate Model for the Assessment of Visceral Adipose Tissue Methylation Profiles Associated with the Metabolic Syndrome in Men. J. Mol. Genet. Med. 2016;10:1–8. doi: 10.4172/1747-0862.1000198.
    1. Rönn T., Volkov P., Gillberg L., Kokosar M., Perfilyev A., Jacobsen A.L., Jørgensen S.W., Brøns C., Jansson P.-A., Eriksson K.-F., et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum. Mol. Genet. 2015;24:3792–3813. doi: 10.1093/hmg/ddv124.
    1. Moleres A., Campion J., Milagro F.I., Marcos A., Campoy C., Garagorri J.M., Gomez-Martinez S., Martinez J.A., Azcona-Sanjulian M.C., Marti A., et al. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: The EVASYON study. FASEB J. 2013;27:2504–2512. doi: 10.1096/fj.12-215566.
    1. Milagro F.I., Campión J., Cordero P., Goyenechea E., Gómez-Uriz A.M., Abete I., Zulet M.A., Martínez J.A. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25:1378–1389. doi: 10.1096/fj.10-170365.
    1. Bouchard L., Rabasa-Lhoret R., Faraj M., Lavoie M.-E., Mill J., Pérusse L., Vohl M.-C. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am. J. Clin. Nutr. 2010;91:309–320. doi: 10.3945/ajcn.2009.28085.
    1. Nicoletti C.F., Nonino C.B., de Oliveira B.A.P., Pinhel M.A., de Souza Pinhel M.A., Mansego M.L., Milagro F.I., Zulet M.A., Martinez J.A. DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery. Obes. Surg. 2016;26:603–611. doi: 10.1007/s11695-015-1802-8.
    1. Robinson P.N. Deep phenotyping for precision medicine. Hum. Mutat. 2012;33:777–780. doi: 10.1002/humu.22080.
    1. Delude C.M. Deep phenotyping: The details of disease. Nature. 2015;527:S14–S15. doi: 10.1038/527S14a.
    1. Schram M.T., Sep S.J.S., van der Kallen C.J., Dagnelie P.C., Koster A., Schaper N., Henry R.M.A., Stehouwer C.D.A. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 2014;29:439–451. doi: 10.1007/s10654-014-9889-0.
    1. Lanktree M.B., Hassell R.G., Lahiry P., Hegele R.A. Phenomics: Expanding the role of clinical evaluation in genomic studies. J. Investig. Med. 2010;58:700–706. doi: 10.2310/JIM.0b013e3181d844f7.
    1. Sébédio J.L. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status. Adv. Food Nutr. Res. 2017;82:83–116. doi: 10.1016/bs.afnr.2017.01.001.
    1. Trabado S., Al-Salameh A., Croixmarie V., Masson P., Corruble E., Fève B., Colle R., Ripoll L., Walther B., Boursier-Neyret C., et al. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS ONE. 2017;12:e0173615. doi: 10.1371/journal.pone.0173615.
    1. Edmands W.M., Ferrari P., Rothwell J.A., Rinaldi S., Slimani N., Barupal D.K., Biessy C., Jenab M., Clavel-Chapelon F., Fagherazzi G., et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am. J. Clin. Nutr. 2015;102:905–913. doi: 10.3945/ajcn.114.101881.
    1. Garg R., Brennan L., Price R.K., Wallace J.M.W., Strain J.J., Gibney M.J., Shewry P.R., Ward J.L., Garg L., Welch R.W. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women. Nutrients. 2016;8:96. doi: 10.3390/nu8020096.
    1. Gibbons H., McNulty B.A., Nugent A.P., Walton J., Flynn A., Gibney M.J., Brennan L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am. J. Clin. Nutr. 2015;101:471–477. doi: 10.3945/ajcn.114.095604.
    1. Garcia-Aloy M., Llorach R., Urpi-Sarda M., Tulipani S., Estruch R., Martínez-González M.A., Corella D., Fitó M., Ros E., Salas-Salvadó J., et al. Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: The PREDIMED Study. J. Proteome Res. 2014;13:3476–3483. doi: 10.1021/pr500425r.
    1. Playdon M.C., Moore S.C., Derkach A., Reedy J., Subar A.F., Sampson J.N., Albanes D., Gu F., Kontto J., Lassale C., et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017;105:450–465. doi: 10.3945/ajcn.116.144501.
    1. Garcia-Perez I., Posma J.M., Gibson R., Chambers E.S., Hansen T.H., Vestergaard H., Hansen T., Beckmann M., Pedersen O., Elliott P., et al. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017;5:184–195. doi: 10.1016/S2213-8587(16)30419-3.
    1. Bhupathiraju S.N., Hu F.B. One (small) step towards precision nutrition by use of metabolomics. Lancet Diabetes Endocrinol. 2017;5:154–155. doi: 10.1016/S2213-8587(17)30007-4.
    1. Rådjursöga M., Karlsson G.B., Lindqvist H.M., Pedersen A., Persson C., Pinto R.C., Ellegård L., Winkvist A. Metabolic profiles from two different breakfast meals characterized by 1H NMR-based metabolomics. Food Chem. 2017;231:267–274. doi: 10.1016/j.foodchem.2017.03.142.
    1. Brennan L. Metabolomics in nutrition research–a powerful window into nutritional metabolism. Essays Biochem. 2016;60:451–458. doi: 10.1042/EBC20160029.
    1. Allam-Ndoul B., Guénard F., Garneau V., Cormier H., Barbier O., Pérusse L., Vohl M.-C. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status. Nutrients. 2016;8:324. doi: 10.3390/nu8060324.
    1. Bakker G.C., van Erk M.J., Pellis L., Wopereis S., Rubingh C.M., Cnubben N.H., Kooistra T., van Ommen B., Hendriks H.F. An antiinflammatory dietary mix modulates inflammation and oxidative and metabolic stress in overweight men: A nutrigenomics approach. Am. J. Clin. Nutr. 2010;91:1044–1059. doi: 10.3945/ajcn.2009.28822.
    1. Paquette M., Medina Larqué A.S., Weisnagel S.J., Desjardins Y., Marois J., Pilon G., Dudonné S., Marette A., Jacques H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017;117:519–531. doi: 10.1017/S0007114517000393.
    1. Riedl A., Gieger C., Hauner H., Daniel H., Linseisen J. Metabotyping and its application in targeted nutrition: An overview. Br. J. Nutr. 2017;117:1631–1644. doi: 10.1017/S0007114517001611.
    1. Connaugton R.M., Mcmorrow A.M., Healy M.L., Mcgillicuddy F.C., Lithander F.E., Roche H.M. An anti-inflammatory nutritional intervention selectively improves insulin sensitivity in overweight and obese adolescents wherein baseline metabotype predicts response. Proc. Nutr. Soc. 2017;73:E84. doi: 10.1017/S002966511400113X.
    1. Kang J.X. Gut microbiota and personalized nutrition. J. Nutrigenet. Nutrigenomics. 2013;6:6–7. doi: 10.1159/000353144.
    1. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Alexis E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2014;341:1241214. doi: 10.1126/science.1241214.
    1. Famodu O.A., Cuff C.F., Cockburn A., Downes M.T., Murray P.J., McFadden J.W., Colby S.E., Morrell J.S., Olfert I.M. Impact of free-living nutrition intervention on microbiome in college students at risk for Disease: FRUVEDomic pilot study. FASEB J. 2016;30:146–147.
    1. Olfert M.D., Cuff C., Cockburn A., Olfert M., McFadden J.W., Downes M., Murray P.J., Holaskova I., Barr M.L., Colby S.E., et al. Nutrition Intervention to Profile Microbiome and Behaviors in Young Adults at Risk for Metabolic Syndrome: FRUVEDomic Pilot Study. J. Nutr. Educ. Behav. 2016;48:S145. doi: 10.1016/j.jneb.2016.04.323.
    1. Mathews A.T., Famodu O.A., Olfert M.D., Murray P.J., Cuff C.F., Downes M.T., Haughey N.J., Colby S.E., Olfert I.M., McFadden J.W. Fruit and Vegetable Intervention Lowers Circulating Ceramide Levels and Improves Estimated Insulin Sensitivity in Young Adults at Risk of Developing Metabolic Syndrome: A FRUVEDomic Pilot Study. FASEB J. 2016;30:1260.3.
    1. Bonder M.J., Kurilshikov A., Tigchelaar E.F., Mujagic Z., Imhann F., Vila A.V., Deelen P., Vatanen T., Schirmer M., Smeekens S.P., et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016;48:1407–1412. doi: 10.1038/ng.3663.
    1. Corella D., Arregui M., Coltell O., Portolés O., Guillem-Sáiz P., Carrasco P., Sorlí J.V., Ortega-Azorín C., González J.I., Ordovás J.M. Association of the LCT-13910C>T Polymorphism With Obesity and Its Modulation by Dairy Products in a Mediterranean Population. Obesity. 2011;19:1707–1714. doi: 10.1038/oby.2010.320.
    1. Heianza Y., Qi L. Gene-diet interaction and precision nutrition in obesity. Int. J. Mol. Sci. 2017;18:787. doi: 10.3390/ijms18040787.
    1. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi: 10.1038/nm.3145.
    1. Tang W.H.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.
    1. Zmora N., Zeevi D., Korem T., Segal E., Elinav E. Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host Microbe. 2016;19:12–20. doi: 10.1016/j.chom.2015.12.016.
    1. Rohrmann S., Overvad K., Bueno-de-Mesquita H.B., Jakobsen M.U., Egeberg R., Tjønneland A., Nailler L., Boutron-Ruault M.-C., Clavel-Chapelon F., Krogh V., et al. Meat consumption and mortality - results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013;11:63. doi: 10.1186/1741-7015-11-63.
    1. Suez J., Korem T., Zeevi D., Zilberman-Schapira G., Thaiss C.A., Maza O., Israeli D., Zmora N., Gilad S., Weinberger A., et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186. doi: 10.1038/nature13793.
    1. Bokulich N.A., Blaser M.J. A Bitter Aftertaste: Unintended Effects of Artificial Sweeteners on the Gut Microbiome. Cell Metab. 2014;20:701–703. doi: 10.1016/j.cmet.2014.10.012.
    1. Feehley T., Nagler C.R. Health: The weighty costs of non-caloric sweeteners. Nature. 2014;514:176–177. doi: 10.1038/nature13752.
    1. Nettleton J.E., Reimer R.A., Shearer J. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiol. Behav. 2016;164:488–493. doi: 10.1016/j.physbeh.2016.04.029.
    1. Frankenfeld C.L., Sikaroodi M., Lamb E., Shoemaker S., Gillevet P.M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 2015;25:736–742. doi: 10.1016/j.annepidem.2015.06.083.
    1. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177.
    1. Fall T., Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol. Cell. Endocrinol. 2014;382:740–757. doi: 10.1016/j.mce.2012.08.018.
    1. Go M.J., Hwang J.-Y., Park T.-J., Kim Y.J., Oh J.H., Kim Y.-J., Han B.-G., Kim B.-J. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a korean population. Diabetes Metab. J. 2014;38:375–387. doi: 10.4093/dmj.2014.38.5.375.
    1. Winkler T.W., Justice A.E., Graff M., Barata L., Feitosa M.F., Chu S., Czajkowski J., Esko T., Fall T., Kilpeläinen T.O., et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet. 2015;11:e1005378. doi: 10.1371/journal.pgen.1005378.
    1. Loos R.J.F., Lindgren C.M., Li S., Wheeler E., Zhao J.H., Prokopenko I., Inouye M., Freathy R.M., Attwood A.P., Beckmann J.S., et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 2008;40:768–775. doi: 10.1038/ng.140.
    1. Schierding W., O’Sullivan J.M. Connecting SNPs in Diabetes: A Spatial Analysis of Meta-GWAS Loci. Front. Endocrinol. (Lausanne) 2015;6:102. doi: 10.3389/fendo.2015.00102.
    1. Belsky D.W., Moffitt T.E., Sugden K., Williams B., Houts R., McCarthy J., Caspi A. Development and Evaluation of a Genetic Risk Score for Obesity. Biodemography Soc. Biol. 2013;59:85–100. doi: 10.1080/19485565.2013.774628.
    1. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–D1006. doi: 10.1093/nar/gkt1229.
    1. Claussnitzer M., Dankel S.N., Kim K.-H., Quon G., Meuleman W., Haugen C., Glunk V., Sousa I.S., Beaudry J.L., Puviindran V., et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015;373:895–907. doi: 10.1056/NEJMoa1502214.
    1. Sofi F., Abbate R., Gensini G.F., Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010;92:1189–1196. doi: 10.3945/ajcn.2010.29673.
    1. Mente A., de Koning L., Shannon H.S., Anand S.S. A Systematic Review of the Evidence Supporting a Causal Link Between Dietary Factors and Coronary Heart Disease. Arch. Intern. Med. 2009;169:659. doi: 10.1001/archinternmed.2009.38.
    1. Martínez-González M.A., García-Arellano A., Toledo E., Salas-Salvadó J., Buil-Cosiales P., Corella D., Covas M.I., Schröder H., Arós F., Gómez-Gracia E., et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE. 2012;7:e43134. doi: 10.1371/journal.pone.0043134.
    1. Fito M., Melander O., Martinez J.A., Toledo E., Carpene C., Corella D. Advances in integrating traditional and omic biomarkers when analyzing the effects of the mediterranean diet intervention in cardiovascular prevention. Int. J. Mol. Sci. 2016;17:1469. doi: 10.3390/ijms17091469.
    1. Ortega-Azorin C., Sorli J. V., Estruch R., Asensio E.M., Coltell O., Gonzalez J.I., Martinez-Gonzalez M.A., Ros E., Salas-Salvado J., Fito M., et al. Amino Acid Change in the Carbohydrate Response Element Binding Protein Is Associated With Lower Triglycerides and Myocardial Infarction Incidence Depending on Level of Adherence to the Mediterranean Diet in the PREDIMED Trial. Circ. Cardiovasc. Genet. 2014;7:49–58. doi: 10.1161/CIRCGENETICS.113.000301.
    1. Rudkowska I., Guenard F., Julien P., Couture P., Lemieux S., Barbier O., Calder P.C., Minihane A.M., Vohl M.-C. Genome-wide association study of the plasma triglyceride response to an n-3 polyunsaturated fatty acid supplementation. J. Lipid Res. 2014;55:1245–1253. doi: 10.1194/jlr.M045898.
    1. Ortega-Azorín C., Sorlí J.V., Asensio E.M., Coltell O., Martínez-González M., Salas-Salvadó J., Covas M.-I., Arós F., Lapetra J., Serra-Majem L., et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc. Diabetol. 2012;11:137. doi: 10.1186/1475-2840-11-137.
    1. Garcia-Aloy M., Llorach R., Urpi-Sarda M., Jáuregui O., Corella D., Ruiz-Canela M., Salas-Salvadó J., Fitó M., Ros E., Estruch R., et al. A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study. Mol. Nutr. Food Res. 2015;59:212–220. doi: 10.1002/mnfr.201400434.
    1. Ryan N.M., O’Donovan C.B., Forster H., Woolhead C., Walsh M.C. New tools for personalised nutrition: The Food4Me project. Nutr. Bull. 2015;40:134–139. doi: 10.1111/nbu.12143.
    1. Livingstone K.M., Celis-Morales C., Mathers J. Who Benefits Most from Personalized Nutrition? Findings from the Pan-European Food4Me Randomized Controlled Trial. FASEB J. 2017;31:963.4.
    1. Celis-Morales C., Livingstone K.M., Marsaux C.F.M., Forster H., O’Donovan C.B., Woolhead C., Macready A.L., Fallaize R., Navas-Carretero S., San-Cristobal R., et al. Design and baseline characteristics of the Food4Me study: A web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr. 2015;10:450. doi: 10.1007/s12263-014-0450-2.
    1. Fallaize R., Forster H., Macready A.L., Walsh M.C., Mathers J.C., Brennan L., Gibney E.R., Gibney M.J., Lovegrove J.A. Online dietary intake estimation: Reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J. Med. Internet Res. 2014;16:e190. doi: 10.2196/jmir.3355.
    1. Forster H., Fallaize R., Gallagher C., O’Donovan C.B., Woolhead C., Walsh M.C., Macready A.L., Lovegrove J.A., Mathers J.C., Gibney M.J., et al. Online Dietary Intake Estimation: The Food4Me Food Frequency Questionnaire. J. Med. Internet Res. 2014;16:e150. doi: 10.2196/jmir.3105.
    1. Baecke J.A.H., Burema J., Frijters J.E.R. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982;36:936–942. doi: 10.14814/phy2.12883.
    1. Nielsen D.E., El-Sohemy A. Disclosure of Genetic Information and Change in Dietary Intake: A Randomized Controlled Trial. PLoS ONE. 2014;9:e112665. doi: 10.1371/journal.pone.0112665.
    1. Celis-Morales C., Livingstone K.M., Marsaux C.F.M., Macready A.L., Fallaize R., O’Donovan C.B., Woolhead C., Forster H., Walsh M.C., Navas-Carretero S., et al. Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4me European randomized controlled trial. Int. J. Epidemiol. 2016 doi: 10.1093/ije/dyw186.
    1. Guenther P.M., Casavale K.O., Reedy J., Kirkpatrick S.I., Hiza H.A.B., Kuczynski K.J., Kahle L.L., Krebs-Smith S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. 2013;113:569–580. doi: 10.1016/j.jand.2012.12.016.
    1. Kirwan L., Walsh M.C., Celis-Morales C., Marsaux C.F.M., Livingstone K.M., Navas-Carretero S., Fallaize R., O’Donovan C.B., Woolhead C., Forster H., et al. Phenotypic factors influencing the variation in response of circulating cholesterol level to personalised dietary advice in the Food4Me study. Br. J. Nutr. 2016;116:2011–2019. doi: 10.1017/S0007114516004256.
    1. Celis-Morales C., Marsaux C.F., Livingstone K.M., Navas-Carretero S., San-Cristobal R., Fallaize R., Macready A.L., O’Donovan C., Woolhead C., Forster H., et al. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am. J. Clin. Nutr. 2017;105:1204–1213. doi: 10.3945/ajcn.116.145680.
    1. Livingstone K.M., Celis-Morales C., Papandonatos G.D., Erar B., Florez J.C., Jablonski K.A., Razquin C., Marti A., Heianza Y., Huang T., et al. FTO genotype and weight loss: Systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ. 2016;354:i4707. doi: 10.1136/bmj.i4707.
    1. Ramos-Lopez O., Milagro F.I., Allayee H., Chmurzynska A., Choi M.S., Curi R., De Caterina R., Ferguson L.R., Goni L., Kang J.X., et al. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. J. Nutrigenet. Nutrigenomics. 2017;10:43–62. doi: 10.1159/000477729.
    1. Abrahams M., Frewer L.J., Bryant E., Stewart-Knox B. Factors determining the integration of nutritional genomics into clinical practice by registered dietitians. Trends Food Sci. Technol. 2017;59:139–147. doi: 10.1016/j.tifs.2016.11.005.
    1. Cormier H., Tremblay B.L., Paradis A.-M., Garneau V., Desroches S., Robitaille J., Vohl M.-C. Nutrigenomics-perspectives from registered dietitians: A report from the Quebec-wide e-consultation on nutrigenomics among registered dietitians. J. Hum. Nutr. Diet. 2014;27:391–400. doi: 10.1111/jhn.12194.
    1. Kohlmeier M., De Caterina R., Ferguson L.R., Görman U., Allayee H., Prasad C., Kang J.X., Nicoletti C.F., Martinez J.A. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2-Ethics, Challenges and Endeavors of Precision Nutrition. J. Nutrigenet. Nutrigenomics. 2016;9:28–46. doi: 10.1159/000446347.

Source: PubMed

3
Sottoscrivi