Haptic wearables as sensory replacement, sensory augmentation and trainer - a review

Peter B Shull, Dana D Damian, Peter B Shull, Dana D Damian

Abstract

Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

Figures

Fig. 1
Fig. 1
Haptic wearable applications classified by degree of sensory impairment
Fig. 2
Fig. 2
Haptic wearables for upper-limb prostheses. (left) Mechanical and vibroelectric haptic device for relaying pressure and vibration. Image from [35] used with permission from IEEE. (right) Compact wearable device for contact, pressure, vibration, shear, and temperature for amputees who underwent targeted nerve reinnervation surgery. Image from [47] used with permission from IEEE
Fig. 3
Fig. 3
Wearable finger vibrotactors can be used to encode Braille characters and for guidance and navigation for the blind. Image from [80] used with permission from IEEE
Fig. 4
Fig. 4
Vibration insoles can assist in navigation for the blind. Image from [89] used with permission from IEEE
Fig. 5
Fig. 5
Tactor arrays can be used to improve standing posture through selective vibrations at the location needing correction. Image from [103] used with permission from IEEE
Fig. 6
Fig. 6
Sensory feedback applied to the tongue. (left) An electrotactile array for applying feedback to the tongue (Brainport balance device). (right) An example of tactile stimulation applied to the tongue to give feedback on head tilt for individuals with vestibular loss. Images from [132] used with permission from Elsevier
Fig. 7
Fig. 7
Future integrated haptic wearable systems. (left) Integrated haptic systems relay complete information about behavioral, physiological and mental state of users. (right) Advanced computing controllers regulate patient information processing and flow, transferring information to users and assistive staff

References

    1. Kusoffsky A, Wadell I, Nilsson L. The relationship between sensory impairment and motor recovery in patients with hemiplegia. Scand J Rehabil Med. 1982;14:27–32.
    1. Stern PH, Mcdowell F, Miller JM, Robinson M. Factors influencing stroke rehabilitation. Stroke. 1971;2:213–218.
    1. Lindenberger U, Ghisletta P: Cognitive and sensory declines in old age: Gauging the evidence for a common cause. Psychol Aging. 2009; 24:1-16.
    1. Geldard F. Adventures in tactile literacy. Am Psychol. 1957;12:115–124.
    1. Jones LA, Sarter NB. Tactile Displays: Guidance for Their Design and Application. Hum Factors J Hum Factors Ergon Soc. 2008;50:90–111.
    1. Bark K, Wheeler J, Shull PB, Savall J, Cutkosky M. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans Haptics. 2010;3:166–176.
    1. Antfolk C, D’Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices. 2013;10:45–54.
    1. Lieberman J, Breazeal C. TIKL: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans Robot. 2007;23:919–926.
    1. Kapur P, Jensen M, Buxbaum LJ, Jax SA., Kuchenbecker KJ: Spatially distributed tactile feedback for kinesthetic motion guidance. In 2010 IEEE Haptics Symp. Proc. IEEE; 2010;519–526.
    1. Wall C, Kentala E. Effect of displacement, velocity, and combined vibrotactile tilt feedback on postural control of vestibulopathic subjects. J Vestib Res Equilib Orientat. 2010;20:61–69.
    1. Bächlin M, Förster K, Tröster G. Proc 11th Int Conf Ubiquitous Comput - Ubicomp ’09. New York, New York, USA: ACM Press; 2009. SwimMaster: A Wearable Assistant for Swimmer; p. 21.
    1. Förster K, Bächlin M, Tröster G. Proc 2nd Int Conf PErvsive Technol Relat to Assist Environ - PETRA ’09. New York, New York, USA: ACM Press; 2009. Non-interrupting user Interfaces for Electronic Body-worn Swim Devices; pp. 1–4.
    1. Shull PB, Lurie K, Cutkosky MR, Besier T. Training multi-parameter gaits to reduce the knee adduction moment with data-driven models and haptic feedback. J Biomech. 2011;44:1605–1609.
    1. Lee B-C, Chen S, Sienko KH. A wearable device for real-time motion error detection and vibrotactile instructional cuing. IEEE Trans Neural Syst Rehabil Eng. 2011;19:374–81.
    1. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21.
    1. Steins D, Dawes H, Esser P, Collett J. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil. 2014;11:1–13.
    1. Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40:11–19.
    1. Bach-y-Rita PW, Kercel S. Sensory substitution and the human–machine interface. Trends Cogn Sci. 2003;7:541–546.
    1. Dozza M, Wall C, Peterka RJ, Chiari L, Horak FB. Effects of practicing tandem gait with and without vibrotactile biofeedback in subjects with unilateral vestibular loss. J Vestib Res. 2007;17:195–204.
    1. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20:21–53.
    1. Reinkensmeyer DJ, Boninger ML. Technologies and combination therapies for enhancing movement training for people with a disability. J Neuroeng Rehabil. 2012;9:17.
    1. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J Rehabil Res Dev. 2011;48:387.
    1. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int. 2007;31:236–57.
    1. Pylatiuk C, Schulz S, Döderlein L. Results of an Internet survey of myoelectric prosthetic hand users. Prosthet Orthot Int. 2007;31:362–70.
    1. Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2:346–357.
    1. Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P. Prosthesis rejection in acquired major upper-limb amputees: a population-based survey. Disabil Rehabil Assist Technol. 2014;7:1–2.
    1. Lewis S, Russold MF, Dietl H: User demands for sensory feedback in upper extremity prostheses. In 2012 IEEE International Symp. on Medical Meas. and Appl. Proceedings (MeMeA). IEEE; 2012;1–4.
    1. Peerdeman B, Boere D, Witteveen H, Huis in 'tVeld R, Hermens H, Stramigioli S, et al. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J Rehabil Res Dev. 2011;48:719.
    1. Atkins DJ, Heard DCY, Donovan WH. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthetics Orthot. 1996;8:1–11.
    1. Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabil. 2011;8:60.
    1. Hernandez Arieta A, Dermitzakis K, Damian D, Lungarella M, Pfeifer R: Sensorymotor coupling in rehabilitation robotics. In Serv Robot Appl. Edited by Yoshihiko Takahashi (Ed.). INTECH Open Access Publisher, 2008;21–36.
    1. Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev. 1989;26:53–62.
    1. Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J Rehabil Res Dev. 1992;29:1.
    1. Antfolk C, Balkenius C, Lundborg G, Rosén B, Sebelius F. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. Biomed Eng Online. 2010;9:50.
    1. Antfolk C, Alonzo MD, Controzzi M, Lundborg G, Rosén B, Sebelius F, et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans Neural Syst Rehabil Eng. 2013;21:112–120.
    1. Jiang L, Cutkosky M, Ruutiainen J, Raisamo R. Using haptic feedback to improve grasp force control in multiple sclerosis patients. IEEE Trans Robot. 2009;25:593–601.
    1. Brown JD, Paek A, Syed M, O’Malley MK, Shewokis PA, Contreras-Vidal JL, Davis AJ, Gillespie RB: Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. World Haptics Conf 2013:271–276.
    1. Tejeiro C, Stepp CE, Malhotra M, Rombokas E, Matsuoka Y: Comparison of remote pressure and vibrotactile feedback for prosthetic hand control. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012;521–525
    1. Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y. Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng. 2013;60:2226–2232.
    1. Augurelle A-S, Smith AM, Lejeune T, Thonnard J-L. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol. 2003;89:665–71.
    1. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Reseash. 1984;56:550–564.
    1. Johansson RS, Cole KJ. Grasp stability during manipulative actions. Can J Physiol Pharmacol. 1994;72:511–24.
    1. Tsagarakis NG, Horne T, Caldwell DG: Slip aestheasis: A portable 2D slip/skin stretch display for the fingertip. First Jt Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoperator Syst 2005:214–219
    1. Walker JM, Blank AA, Shewokis PA, O’Malley MK. Tactile feedback of object slip improves performance in a grasp and hold task. IEEE Haptics Symp. 2014;2014:461–466.
    1. Webster RJ, Murphy TE, Verner LN, Okamura AM. A novel two-dimensional tactile slip display: design, kinematics and perceptual experiments. ACM Trans Appl Percept. 2005;2:150–165.
    1. Damian DD, Arita AH, Martinez H, Pfeifer R. Slip speed feedback for grip force control. IEEE Trans Biomed Eng. 2012;59:2200–10.
    1. Kim K, Member A, Colgate JE, Santos-munn JJ, Makhlin A, Peshkin MA. On the design of miniature haptic devices for upper extremity prosthetics. IEEE/ASME Trans on Mechatronics. 2010;15:27–39.
    1. Damian DD, Ludersdorfer M, Kim Y, Hernandez Arieta A, Pfeifer R, Okamura AM. Wearable haptic device for cutaneous force and slip speed display. IEEE Int Conf Robot Autom. 2012;2012:1038–1043.
    1. Bach-y-Rita P, Kaczmarek KA, Tyler ME, Garcia-Lara J. Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. J Rehabil Res Dev. 1998;35:427–30.
    1. Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng. 2009;17:560–7.
    1. Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans neural Syst Rehabil Eng. 2010;18:58–66.
    1. Seps M, Dermitzakis K, Hernandez-arieta A: Study on lower back electrotactile stimulation characteristics for prosthetic sensory feedback. In 2011 IEEE/RSJ Int Conf Intell Robot Syst; 2011:3454–3459.
    1. Brown JD, Gillespie RB, Gardner D, Gansallo E a. Co-location of force and action improves identification of force-displacement features. 2012 IEEE Haptics Symp 2012:187–193.
    1. Van Der Riet D, Stopforth R, Bright G, Diegel O: Simultaneous vibrotactile feedback for multisensory upper limb prosthetics. Proc - 2013 6th Robot Mechatronics Conf RobMech 2013 2013:64–69.
    1. Stepp CE, Matsuoka Y. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans Neural Syst Rehabil Eng. 2011;19:677–685.
    1. Blank A, Okamura AM, Kuchenbecker KJ: Identifying the role of proprioception in upperlimb prosthesis control: Studies on targeted motion. ACM Transactions on Applied Perception. 2010;7(3), Article #15:1–19.
    1. Gurari N, Kuchenbecker KJ, Okamura AM. Perception of springs with visual and proprioceptive motion cues: Implications for prosthetics. IEEE Trans Human-Machine Syst. 2013;43:102–114.
    1. Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59:2219–26.
    1. Blank A, Okamura M, Whitcomb LL. Task-dependent impedance and implications for upper-limb prosthesis control. Int J Rob Res. 2014;33:827–846.
    1. Blank A, Okamura AM, Whitcomb LL: User comprehension of task performance with varying impedance in a virtual prosthetic arm: A pilot study. 4th IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2012:500–507.
    1. Schorr SB, Quek ZF, Romano RY, Nisky I, Provancher WR, Okamura AM: Sensory substitution via cutaneous skin stretch feedback. In 2013 IEEE Int Conf Robot Autom; 2013:2341–2346.
    1. Martin J, Pollock A, Hettinger J. Microprocessor lower limb prosthetics: Review of current state of the art. J Orthotists annd Prosthetists. 2010;22:183–193.
    1. Gailey R. Rehabilitation of a traumatic lower limb amputee. Physiother Res Int. 2006;3:4–7.
    1. Lamoth CJC, Ainsworth E, Polomski W, Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med Eng Phys. 2010;32:1009–14.
    1. Wentink E, Talsma-Kerkdijk E, Rietman H, Veltink P: Feasibility of error-based electrotactile and auditive feedback in prosthetic walking. Prosthet Orthot Int. 2015;39:255-259.
    1. Fan RE, Culjat MO, King C-H, Franco ML, Boryk R, Bisley JW, et al. A haptic feedback system for lower-limb prostheses. IEEE Trans neural Syst Rehabil Eng. 2008;16:270–7.
    1. Crea S, Cipriani C, Donati M, Carrozza M, Vitiello N: Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation. IEEE Trans Neural Syst Rehabil Eng. 2015;23:250-257.
    1. Rusaw D, Hagberg K, Nolan L, Ramstrand N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J Rehabil Res Dev. 2012;49:1239–1254.
    1. Buma DG, Buitenweg JR, Veltink PH. Intermittent stimulation delays adaptation to electrocutaneous sensory feedback. IEEE Trans Neural Rehabil Eng. 2007;15:435–441.
    1. Sharma A, Torres-moreno R, Zabjek K, Andrysek J. Toward an artificial sensory feedback system for prosthetic mobility rehabilitation: Examination of sensorimotor responses. J Rehabil Res Dev. 2014;51:907–918.
    1. Bach-y-Rita P, Collins C, Saunders F, White B, Scadden L. Vision substitution by tactile image projection. Nature. 1969;221:963–964.
    1. Velazquez R. Wearable assistive devices for the blind. Wearable Auton Biomed Devices Syst Smart Environ. 2010;75:331–349.
    1. Dakopoulos D, Bourbakis NG. Wearable obstacle avoidance electronic travel aids for blind: A survey. IEEE Trans Syst Man Cybern. 2010;40:25–35.
    1. Mcdaniel T, Krishna S, Balasubramanian V, Colbry D, Panchanathan S: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. In HAVE Haptic Audio Vis Environ their Appl; 2008:1–6.
    1. Kärcher SM, Fenzlaff S, Hartmann D, Nagel SK, König P. Sensory augmentation for the blind. Front Hum Neurosci. 2012;6:1–15.
    1. Johnson L, Higgins CM. A navigation aid for the blind using tactile-visual sensory substitution. IEEE Eng Med Biol Conf. 2006;1:6289–92.
    1. Tsukada K, Yasumura M: ActiveBelt: Belt-type wearable tactile display. UbiComp; 2004:384–399.
    1. Van Erp JBF, van Veen HAHC, Jansen C, Dobbins T. Waypoint navigation with a vibrotactile waist belt. ACM Trans Appl Percept. 2005;2:106–117.
    1. Elliott LR, van Erp JBF, Redden ES, Duistermaat M. Field-based validation of a tactile navigation device. IEEE Trans Haptics. 2010;3:1–10.
    1. Amemiya T, Yamashita J, Hirota K, Michitaka H: Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. IEEE Virtual Real; 2004:165–173
    1. Meers S, Ward K: A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation. Int Conf Sens Technol; 2005:551–556
    1. Koo IM, Jung K, Koo JC, Nam J, Lee YK. Development of soft-actuator-based wearable tactile display. IEEE Trans Robot. 2008;24:549–558.
    1. Shah C, Bouzit M, Youssef M, Vasquez L: Evaluation of RU-Netra - tactile feedback navigation system for the visually impaired. Int Work Virtual Rehabil; 2006:72–77
    1. Ito K, Okamoto M, Akita J, Ono T, Gyobu I, Takagi T: CyARM: an alternative aid device for blind persons.CHI; 2005:1483–1486.
    1. Gallo S, Chapuis D, Santos-Carreras L, Kim Y, Retornaz P, Bleuler H, Gassert R: Augmented white cane with multimodal haptic feedback. 3rd IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics 2010:149–155.
    1. Tang H, Beebe DJ. An oral tactile interface for blind navigation. IEEE Trans Neural Syst Rehabil Eng. 2006;14:116–23.
    1. Jones LA, Lockyer B, Piateski E. Tactile display and vibrotactile pattern recognition on the torso. Adv Robot. 2006;20:1359–1374.
    1. Mann S, Huang J, Janzen R, Lo R, Rampersad V, Chen A, et al. ACM Int Conf Multimed. New York, New York, USA: ACM Press; 2011. Blind navigation with a wearable range camera and vibrotactile helmet; pp. 1325–1328.
    1. Velazquez R, Bazan O. Preliminary evaluation of podotactile feedback in sighted and blind users. IEEE Eng Med Biol Soc Conf. 2010;2010:2103–6.
    1. Menelas BJ, Otis MJ: Design of a serious game for learning vibrotactile messages. IEEE Haptic Audio Vis Environ Games; 2012:124–129.
    1. Kaczmarek K. Sensory Augmentation and Substitution. In: Bronzino EJD, editor. Biomed Eng Handb. 2. Boca Raton: CRC Press LLC; 2000.
    1. Rosen SM, Fourcin AJ, Moore BC. Voice pitch as an aid to lipreading. Nature. 1981;291:150–152.
    1. Saunders FA, Hill WA, Franklin B. A wearable tactile sensory aid for profoundly deaf children. J Med Syst. 1981;5:265–70.
    1. Boothroyd A. A wearable tactile intonation display for the deaf. IEEE Trans Acoust. 1985;33:111–117.
    1. Weisenberger JM, Broadstone SM, Saunders FA. Evaluation of two multichannel tactile aids for the hearing impaired. J Acoust Soc Am. 1989;86:1764–75.
    1. Bernstein LE, Demorest ME, Coulter DC, O’Connell M. Lipreading sentences with vibrotactile vocoders: Performance of normal-hearing and hearing-impaired subjects. J Acoust Soc Am. 1991;90:2971–2984.
    1. Reed CM, Delhorne LA. The reception of environmental sounds through wearable tactual Aids. Ear Hear. 2003;24:528–538.
    1. Sakajiri M, Miyoshi S, Nakamura K, Fukushima S, Ifukube T: Voice pitch control using tactile feedback / or the deafblind or the hearing impaired persons to assist their singing. IEEE Int Conf Syst Man, Cybern; 2010:1483–1487.
    1. Yuan H, Reed CM, Durlach NI. Tactual display of consonant voicing as a supplement to lipreading. J Acoust Soc Am. 2005;118:1003–1015.
    1. Gopalai AA, Senanayake SMNA. A wearable real-time intelligent posture corrective system using vibrotactile feedback. IEEE Trans Mechatronics. 2011;16:827–834.
    1. Kentala E, Vivas J, Wall C. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol. 2003;112:404–9.
    1. Wall C, Weinberg MS, Schmidt PB, Krebs DE. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans Biomed Eng. 2001;48:1153–61.
    1. Wall C, Weinberg MS: Balance prostheses for postural control. IEEE Eng Med Biol Mag 2003;22:84–90.
    1. Sienko KH, Balkwill MD, Oddsson LIE, Wall C. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations. J Vestib Res. 2008;18:273–85.
    1. Jeka J, Lackner JR. Fingertip contact influences human postural control. Exp Brain Res. 1994;79:495–502.
    1. Lee B-C, Martin BJ, Sienko KH. Directional postural responses induced by vibrotactile stimulations applied to the torso. Exp brain Res. 2012;222:471–82.
    1. Lee B-C, Martin BJ, Ho A, Sienko KH. Postural reorganization induced by torso cutaneous covibration. J Neurosci. 2013;33:7870–6.
    1. Haggerty S, Jiang L-T, Galecki A, Sienko KH. Effects of biofeedback on secondary-task response time and postural stability in older adults. Gait Posture. 2012;35:523–8.
    1. Honegger F, Hillebrandt IMA, van den Elzen NGA, Tang K-S, Allum JHJ. The effect of prosthetic feedback on the strategies and synergies used by vestibular loss subjects to control stance. J Neuroeng Rehabil. 2013;10:115.
    1. Davis JR, Carpenter MG, Tschanz R, Meyes S, Debrunner D, Burger J, et al. Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait Posture. 2010;31:465–72.
    1. Nanhoe-Mahabier W, Allum JH, Pasman EP, Overeem S, Bloem BR. The effects of vibrotactile biofeedback training on trunk sway in Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1017–21.
    1. Vuillerme N, Chenu O, Demongeot J, Payan Y. Controlling posture using a plantar pressure-based, tongue-placed tactile biofeedback system. Exp brain Res. 2007;179:409–14.
    1. Ghulyan-Bedikian V, Paolino M, Paolino F. Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: Influence of vestibular loss and old-age. Gait Posture. 2013;38:777–783.
    1. Mcdonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci. 2011;12:415–425.
    1. Moss F. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115:267–281.
    1. Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362:1123–4.
    1. Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59:4–12.
    1. Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359–67.
    1. Horak FB, Dozza M, Peterka R, Chiari L, Wall C. Vibrotactile biofeedback improves tandem gait in patients with unilateral vestibular loss. Ann N Y Acad Sci. 2009;1164:279–81.
    1. Janssen LJF, Verhoeff LL, Horlings CGC, Allum JHJ. Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects. Gait Posture. 2009;29:575–81.
    1. Verhoeff LL, Horlings CGC, Janssen LJF, Bridenbaugh SA, Allum JHJ. Effects of biofeedback on trunk sway during dual tasking in the healthy young and elderly. Gait Posture. 2009;30:76–81.
    1. Sienko KH, Balkwill MD, Oddsson LIE, Wall C. The effect of vibrotactile feedback on postural sway during locomotor activities. J Neuroeng Rehabil. 2013;10:93.
    1. Galica AM, Kang HG, Priplata AA, D’Andrea SE, Starobinets OV, Sorond FA, et al. Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture. 2009;30:383–7.
    1. Hewer RL. Rehabilitation after stroke. Q J Med. 1990;76:659–674.
    1. Huang H, Wolf SL, He J. Recent developments in biofeedback for neuromotor rehabilitation. J Neuroeng Rehabil. 2006;3:11.
    1. Jonsdottir J, Cattaneo D, Recalcati M, Regola A, Rabuffetti M, Ferrarin M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair. 2010;24:478–485.
    1. Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, et al. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys. 2013;35:269–76.
    1. Rao N, Aruin AS. Auxiliary sensory cues improve automatic postural responses in individuals with diabetic neuropathy. Neurorehabil Neural Repair. 2011;25:110–7.
    1. Redd CB, Bamberg SJM. A wireless sensory feedback device for real-time gait feedback and training. IEEE/ASME Trans Mechatronics. 2012;17:425–433.
    1. Van Wegen E, de Goede C, Lim I, Rietberg M, Nieuwboer A, Willems A, et al. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson’s disease. J Neurol Sci. 2006;248:210–4.
    1. McKinney Z, Heberer K, Nowroozi BN, Greenberg M, Fowler E, Grundfest W: Pilot evaluation of wearable tactile biofeedback system for gait rehabilitation in peripheral neuropathy. IEEE Haptics Symp. Ieee; 2014:135–140
    1. Badke MB, Sherman J, Boyne P, Page S, Dunning K. Tongue-based biofeedback for balance in stroke: results of an 8-week pilot study. Arch Phys Med Rehabil. 2011;92:1364–70.
    1. Lee I, Choi S: Effects of Multi-modal Guidance for the Acquisition of Sight Reading Skills: A Case Study with Simple Drum Sequences. IEEE World Haptics; 2013:571–576.
    1. Spelmezan D, Jacobs M, Hilgers A, Borchers J: Tactile motion instructions for physical activities. Conf Hum Factors Comput Syst 2009:2243–2252.
    1. Dowling AV, Favre J, Andriacchi TP. Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am J Sports Med. 2012;40:1075–1083.
    1. Wheeler JW, Shull PB, Besier T. Real-time knee adduction moment feedback for gait retraining through visual and tactile displays. J Biomech Eng. 2011;133:041007.
    1. Dowling AV, Fisher DS, Andriacchi TP. Gait modification via verbal instruction and an active feedback system to reduce peak knee adduction moment. J Biomech Eng. 2010;132:071007–5.
    1. Shull PB, Shultz R, Silder A, Dragoo JL, Besier TF, Cutkosky MR, et al. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46:122–128.
    1. Shull PB, Silder A, Shultz R, Dragoo JL, Besier TF, Delp SL, et al. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res. 2013;31:1020–1025.
    1. Lurie KL, Shull PB, Nesbitt KF, Cutkosky MR: Informing haptic feedback design for gait retraining. IEEE World Haptics; 2011:19–24.
    1. Jirattigalachote WJ, Shull PB, Cutkosky MR: Virtual pebble: a haptic state display for pedestrians. IEEE Ro-Man Symp; 2011:401–406.
    1. Alahakone AU, Senanayake SMNA: Vibrotactile feedback systems: Current trends in rehabilitation, sports and information display. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM 2009:1148–1153.
    1. Rogers JA. A clear advance in soft actuators. Science. 2013;341:968–9.
    1. Majidi C. Soft robotics: A perspective—current trends and prospects for the future. Soft Robot. 2014;1:5–11.
    1. Yeo W-H, Kim Y-S, Lee J, Ameen A, Shi L, Li M, et al. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater. 2013;25:2773–8.
    1. Riener R, Lünenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43:679.
    1. Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun. 2013;4:1543.
    1. Nyholm L, Nyström G, Mihranyan A, Strømme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater. 2011;23:3751–69.
    1. Park S, Jayaraman S. Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag. 2003;22:41–48.
    1. Axisa F, Schmitt PM, Gehin C, Delhomme G, Mcadams E, Dittmar A, et al. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed. 2005;9:325–336.
    1. Poh M-Z, Swenson NC, Picard RW. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans Biomed Eng. 2010;57:1243–52.

Source: PubMed

3
Sottoscrivi