SEPSIS project: a protocol for studying biomarkers of neonatal sepsis and immune responses of infants in a malaria-endemic region

Nadine Fievet, Sem Ezinmegnon, Gino Agbota, Darius Sossou, Rodolphe Ladekpo, Komi Gbedande, Valerie Briand, Gilles Cottrell, Laurence Vachot, Javier Yugueros Marcos, Alexandre Pachot, Julien Textoris, Sophie Blein, Ulrik Lausten-Thomsen, Achille Massougbodji, Lehila Bagnan, Nicole Tchiakpe, Marceline d'Almeida, Jules Alao, Ida Dossou-Dagba, Pierre Tissieres, SEPSIS study group collaborators, SEPSIS study group, Aurax Fernando, Urbain Ahouayito, Basile Agossou, Caleb Ezinmegnon, Anauel Fortunato, Josué Fiagbenou, Djamirou Dossa, Dramane Abdou, Canisius Fantodji, Nawal Sare, Wilisto Bara, Razack Monde, Erasme Gbagidi, Larissa Allokpe, Armand Housemenou, Landry Assongba, Manfred Accrombessi, Florent Kouhouenou, Armand Hounsemenou, Amour Ridagba, Christiane Aguemon, Dissou Affolabi, Réné Perrin, Benjamin Hounkpatin, Dossou Dagba, Luis Augusto, Sophie Thibault, François Bartolo, Marine Mommert, Karen Brengel-Pesce, Nadine Fievet, Sem Ezinmegnon, Gino Agbota, Darius Sossou, Rodolphe Ladekpo, Komi Gbedande, Valerie Briand, Gilles Cottrell, Laurence Vachot, Javier Yugueros Marcos, Alexandre Pachot, Julien Textoris, Sophie Blein, Ulrik Lausten-Thomsen, Achille Massougbodji, Lehila Bagnan, Nicole Tchiakpe, Marceline d'Almeida, Jules Alao, Ida Dossou-Dagba, Pierre Tissieres, SEPSIS study group collaborators, SEPSIS study group, Aurax Fernando, Urbain Ahouayito, Basile Agossou, Caleb Ezinmegnon, Anauel Fortunato, Josué Fiagbenou, Djamirou Dossa, Dramane Abdou, Canisius Fantodji, Nawal Sare, Wilisto Bara, Razack Monde, Erasme Gbagidi, Larissa Allokpe, Armand Housemenou, Landry Assongba, Manfred Accrombessi, Florent Kouhouenou, Armand Hounsemenou, Amour Ridagba, Christiane Aguemon, Dissou Affolabi, Réné Perrin, Benjamin Hounkpatin, Dossou Dagba, Luis Augusto, Sophie Thibault, François Bartolo, Marine Mommert, Karen Brengel-Pesce

Abstract

Introduction: Neonatal sepsis outreaches all causes of neonatal mortality worldwide and remains a major societal burden in low and middle income countries. In addition to limited resources, endemic morbidities, such as malaria and prematurity, predispose neonates and infants to invasive infection by altering neonatal immune response to pathogens. Nevertheless, thoughtful epidemiological, diagnostic and immunological evaluation of neonatal sepsis and the impact of gestational malaria have never been performed.

Methods and analysis: A prospective longitudinal multicentre follow-up of 580 infants from birth to 3 months of age in urban and suburban Benin will be performed. At delivery, and every other week, all children will be examined and clinically evaluated for occurrence of sepsis. At delivery, cord blood systematic analysis of selected plasma and transcriptomic biomarkers (procalcitonin, interleukin (IL)-6, IL-10, IP10, CD74 and CX3CR1) associated with sepsis pathophysiology will be evaluated in all live births as well as during the follow-up, and when sepsis will be suspected. In addition, whole blood response to selected innate stimuli and extensive peripheral blood mononuclear cells phenotypic characterisation will be performed. Reference intervals specific to sub-Saharan neonates will be determined from this cohort and biomarkers performances for neonatal sepsis diagnosis and prognosis tested.

Ethics and dissemination: Ethical approval has been obtained from the Comité d'Ethique de la Recherche - Institut des Sciences Biomédicales Appliquées (CER-ISBA 85 - 5 April 2016, extended on 3 February 2017). Results will be disseminated through international presentations at scientific meetings and publications in peer-reviewed journals.

Trial registration number: ClinicalTrials.gov registration number: NCT03780712.

Keywords: immunology; neonatal intensive & critical care; neonatology; paediatric infectious disease & immunisation.

Conflict of interest statement

Competing interests: JYM, LV, JT, AP and SB are employed by an in vitro diagnostic company, bioMérieux SA. The remaining authors declare that this research was conducted in the absence of any commercial or financial relationship that could cause potential conflict of interest.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Geographical location of the six study centres in the Sô-Ava, Abomey-Calavi and Cotonou districts in Benin.
Figure 2
Figure 2
Schematic design of the sepsis study illustrating inclusion, planned biological analysis and follow-up time points.

References

    1. Seale AC, Blencowe H, Manu AA, et al. . Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, South Asia, and Latin America for 2012: a systematic review and meta-analysis. Lancet Infect Dis 2014;14:731–41. 10.1016/S1473-3099(14)70804-7
    1. Blencowe H, Cousens S. Addressing the challenge of neonatal mortality. Trop Med Int Health 2013;18:303–12. 10.1111/tmi.12048
    1. Blencowe H, Cousens S, Oestergaard MZ, et al. . National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012;379:2162–72. 10.1016/S0140-6736(12)60820-4
    1. Katz J, Wu LA, Mullany LC, et al. . Prevalence of small-for-gestational-age and its mortality risk varies by choice of birth-weight-for-gestation reference population. PLoS One 2014;9:e92074. 10.1371/journal.pone.0092074
    1. Bailey PE, Andualem W, Brun M, et al. . Institutional maternal and perinatal deaths: a review of 40 low and middle income countries. BMC Pregnancy Childbirth 2017;17:295. 10.1186/s12884-017-1479-1
    1. Ranjeva SL, Warf BC, Schiff SJ. Economic burden of neonatal sepsis in sub-Saharan Africa. BMJ Glob Health 2018;3:e000347. 10.1136/bmjgh-2017-000347
    1. Labeaud AD, Malhotra I, King MJ, et al. . Do antenatal parasite infections devalue childhood vaccination? PLoS Negl Trop Dis 2009;3:e442. 10.1371/journal.pntd.0000442
    1. Dauby N, Goetghebuer T, Kollmann TR, et al. . Uninfected but not unaffected: chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis 2012;12:330–40. 10.1016/S1473-3099(11)70341-3
    1. Sylvester B, Gasarasi DB, Aboud S, et al. . Prenatal exposure to Plasmodium falciparum increases frequency and shortens time from birth to first clinical malaria episodes during the first two years of life: prospective birth cohort study. Malar J 2016;15:379. 10.1186/s12936-016-1417-0
    1. Briand V, Le Hesran J-Y, Mayxay M, et al. . Prevalence of malaria in pregnancy in southern Laos: a cross-sectional survey. Malar J 2016;15:436. 10.1186/s12936-016-1492-2
    1. Accrombessi M, Fievet N, Yovo E, et al. . Prevalence and associated risk factors of malaria in the first trimester of pregnancy: a preconceptional cohort study in Benin. J Infect Dis 2018;217:1309–17. 10.1093/infdis/jiy009
    1. Odorizzi PM, Feeney ME. Impact of in utero exposure to malaria on fetal T cell immunity. Trends Mol Med 2016;22:877–88. 10.1016/j.molmed.2016.08.005
    1. Barboza R, Hasenkamp L, Barateiro A, et al. . Fetal-derived MyD88 signaling contributes to poor pregnancy outcomes during gestational malaria. Front Microbiol 2019;10:68. 10.3389/fmicb.2019.00068
    1. Le Hesran JY, Cot M, Personne P, et al. . Maternal placental infection with plasmodium falciparum and malaria morbidity during the first 2 years of life. Am J Epidemiol 1997;146:826–31. 10.1093/oxfordjournals.aje.a009200
    1. Rachas A, Le Port A, Cottrell G, et al. . Placental malaria is associated with increased risk of nonmalaria infection during the first 18 months of life in a beninese population. Clin Infect Dis 2012;55:672–8. 10.1093/cid/cis490
    1. Veru F, Laplante DP, Luheshi G, et al. . Prenatal maternal stress exposure and immune function in the offspring. Stress 2014;17:133–48. 10.3109/10253890.2013.876404
    1. Yu JC, Khodadadi H, Malik A, et al. . Innate immunity of neonates and infants. Front Immunol 2018;9:9. 10.3389/fimmu.2018.01759
    1. Luciano AA, Arbona-Ramirez IM, Ruiz R, et al. . Alterations in regulatory T cell subpopulations seen in preterm infants. PLoS One 2014;9:e95867. 10.1371/journal.pone.0095867
    1. Sharma AA, Jen R, Brant R, et al. . Hierarchical maturation of innate immune defences in very preterm neonates. Neonatology 2014;106:1–9. 10.1159/000358550
    1. Lavoie PM, Huang Q, Jolette E, et al. . Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis. J Infect Dis 2010;202:1754–63. 10.1086/657143
    1. Tissières P, Ochoda A, Dunn-Siegrist I, et al. . Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLoS One 2012;7:e32863. 10.1371/journal.pone.0032863
    1. Glaser K, Speer CP. Toll-Like receptor signaling in neonatal sepsis and inflammation: a matter of orchestration and conditioning. Expert Rev Clin Immunol 2013;9:1239–52. 10.1586/1744666X.2013.857275
    1. Stoll BJ, Hansen NI, Bell EF, et al. . Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 2010;126:443–56. 10.1542/peds.2009-2959
    1. Tröger B, Müller T, Faust K, et al. . Intrauterine growth restriction and the innate immune system in preterm infants of ≤32 weeks gestation. Neonatology 2013;103:199–204. 10.1159/000343260
    1. Boomer JS, To K, Chang KC, et al. . Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011;306:2594–605. 10.1001/jama.2011.1829
    1. Winkler MS, Rissiek A, Priefler M, et al. . Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: a diagnostic tool for immunosuppression? PLoS One 2017;12:e0182427. 10.1371/journal.pone.0182427
    1. Payen D, Faivre V, Miatello J, et al. . Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis 2019;19:931. 10.1186/s12879-019-4526-x
    1. Venet F, Lukaszewicz A-C, Payen D, et al. . Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr Opin Immunol 2013;25:477–83. 10.1016/j.coi.2013.05.006
    1. Pachot A, Cazalis M-A, Venet F, et al. . Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 2008;180:6421–9. 10.4049/jimmunol.180.9.6421
    1. Peronnet E, Venet F, Maucort-Boulch D, et al. . Association between mRNA expression of CD74 and IL10 and risk of ICU-acquired infections: a multicenter cohort study. Intensive Care Med 2017;43:1013–20. 10.1007/s00134-017-4805-1
    1. Palojärvi A, Petäjä J, Siitonen S, et al. . Low monocyte HLA-DR expression as an indicator of immunodepression in very low birth weight infants. Pediatr Res 2013;73:469–75. 10.1038/pr.2012.199
    1. Medugu N, Iregbu K, Iroh Tam P-Y, et al. . Aetiology of neonatal sepsis in Nigeria, and relevance of group B Streptococcus: a systematic review. PLoS One 2018;13:e0200350. 10.1371/journal.pone.0200350
    1. Agbota G, Polman K, Wieringa FT, et al. . Maternal malaria but not schistosomiasis is associated with a higher risk of febrile infection in infant during the first 3 months of life: a mother-child cohort in Benin. PLoS One 2019;14:e0222864. 10.1371/journal.pone.0222864
    1. Gbédandé K, Varani S, Ibitokou S, et al. . Malaria modifies neonatal and early-life Toll-like receptor cytokine responses. Infect Immun 2013;81:2686–96. 10.1128/IAI.00237-13
    1. Natama HM, Rovira-Vallbona E, Somé MA, et al. . Malaria incidence and prevalence during the first year of life in Nanoro, Burkina Faso: a birth-cohort study. Malar J 2018;17:163. 10.1186/s12936-018-2315-4
    1. Adegnika AA, Köhler C, Agnandji ST, et al. . Pregnancy-Associated malaria affects Toll-like receptor ligand-induced cytokine responses in cord blood. J Infect Dis 2008;198:928–36. 10.1086/591057
    1. Nouatin O, Gbédandé K, Ibitokou S, et al. . Infants' peripheral blood lymphocyte composition reflects both maternal and post-natal infection with Plasmodium falciparum. PLoS One 2015;10:e0139606. 10.1371/journal.pone.0139606
    1. Brustoski K, Kramer M, Möller U, et al. . Neonatal and maternal immunological responses to conserved epitopes within the DBL-gamma3 chondroitin sulfate A-binding domain of Plasmodium falciparum erythrocyte membrane protein 1. Infect Immun 2005;73:7988–95. 10.1128/IAI.73.12.7988-7995.2005
    1. Franklin BS, Parroche P, Ataíde MA, et al. . Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function. Proc Natl Acad Sci USA 2009;106:5789–94. 10.1073/pnas.0809742106
    1. Mackroth MS, Malhotra I, Mungai P, et al. . Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to plasmodium falciparum antigens. J Immunol 2011;186:2780–91. 10.4049/jimmunol.1001188
    1. Accrombessi M, Yovo E, Cottrell G, et al. . Cohort profile: effect of malaria in early pregnancy on fetal growth in Benin (RECIPAL preconceptional cohort). BMJ Open 2018;8:e019014. 10.1136/bmjopen-2017-019014
    1. Stocker M, van Herk W, El Helou S, et al. . Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns). Lancet 2017;390:871–81. 10.1016/S0140-6736(17)31444-7
    1. Swysen C, Vekemans J, Bruls M, et al. . Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine. Malar J 2011;10:223. 10.1186/1475-2875-10-223
    1. Lundell A-C, Johansen S, Adlerberth I, et al. . High proportion of CD5+ B cells in infants predicts development of allergic disease. J Immunol 2014;193:510–8. 10.4049/jimmunol.1302990
    1. Lundell A-C, Hesselmar B, Nordström I, et al. . Higher B-cell activating factor levels at birth are positively associated with maternal dairy farm exposure and negatively related to allergy development. J Allergy Clin Immunol 2015;136:e1073:1074–82. 10.1016/j.jaci.2015.03.022
    1. Rueda CM, Moreno-Fernandez ME, Jackson CM, et al. . Neonatal regulatory T cells have reduced capacity to suppress dendritic cell function. Eur J Immunol 2015;45:2582–92. 10.1002/eji.201445371
    1. Rueda CM, Wells CB, Gisslen T, et al. . Effect of chorioamnionitis on regulatory T cells in moderate/late preterm neonates. Hum Immunol 2015;76:65–73. 10.1016/j.humimm.2014.10.016
    1. Rennó C, Nadaf MIV, Zago CA, et al. . Healthy preterm newborns show an increased frequency of CD4(+) CD25(high) CD127(low) FOXP3(+) regulatory T cells with a naive phenotype and high expression of gut-homing receptors. Scand J Immunol 2016;83:445–55. 10.1111/sji.12435

Source: PubMed

3
Sottoscrivi