Organ preservation in rectal cancer - Challenges and future strategies

C Gani, P Bonomo, K Zwirner, C Schroeder, A Menegakis, C Rödel, D Zips, C Gani, P Bonomo, K Zwirner, C Schroeder, A Menegakis, C Rödel, D Zips

Abstract

Neoadjuvant radiochemotherapy with subsequent total mesorectal excision is the standard of care for locally advanced rectal cancer. While this multimodal strategy has decreased local recurrences rates below 5%, long-term morbidities are considerable in terms of urinary, sexual or bowel functioning. At the same time approximately 10-20% of patients have no evidence of residual tumour in their surgical specimen. Pioneering studies from Brazil have suggested that surgery can safely be omitted in carefully selected patients with a clinical complete response after radiochemotherapy. Although confirmatory studies showed similar results, challenges in terms of optimizing radiochemotherapy for organ-preservation, appropriate selection of patients for non-operative management and the safety of this approach remain. The present review will summarize the current data on organ-preservation in rectal cancer and discuss the challenges that need to be addressed in future trials.

Keywords: Chemoradiotherapy; Organ preservation; Radiochemotherapy; Radiotherapy; Rectal cancer; Wait and see.

References

    1. Mendenhall W.M., Million R.R., Pfaff W.W. Patterns of recurrence in adenocarcinoma of the rectum and rectosigmoid treated with surgery alone: implications in treatment planning with adjuvant radiation therapy. Int J Radiat Oncol Biol Phys. 1983;9:977–985.
    1. Rödel C., Graeven U., Fietkau R., Hohenberger W., Hothorn T., Arnold D. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–989.
    1. Heald R.J. The 'Holy Plane' of rectal surgery. J R Soc Med. 1988;81:503–508.
    1. Palmer G., Anderin C., Martling A., Holm T. Local control and survival after extralevator abdominoperineal excision for locally advanced or low rectal cancer. Colorectal Dis. 2014;16:527–532.
    1. Gérard J.P., Conroy T., Bonnetain F., Bouché O., Chapet O., Closon-Dejardin M.T. Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3–4 rectal cancers: results of FFCD 9203. J Clin Oncol. 2006;24:4620–4625.
    1. Sauer R., Becker H., Hohenberger W., Rödel C., Wittekind C., Fietkau R. Preoperative versus postoperative chemoradiotherapy for rectal cancer. New Engl J Med. 2004;351:1731–1740.
    1. Coco C., Valentini V., Manno A., Rizzo G., Gambacorta M.A., Mattana C. Functional results after radiochemotherapy and total mesorectal excision for rectal cancer. Int J Colorectal Dis. 2007;22:903–910.
    1. Maas M., Beets-Tan R.G.H., Lambregts D.M.J., Lammering G., Nelemans P.J., Engelen S.M.E. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol. 2011;29:4633–4640.
    1. PROSPECT. PROSPECT: chemotherapy alone or chemotherapy plus radiation therapy in treating patients with locally advanced rectal cancer undergoing surgery (NCT01515787).
    1. Kreis M.E., Ruppert R., Ptok H., Strassburg J., Brosi P., Lewin A. Use of preoperative magnetic resonance imaging to select patients with rectal cancer for neoadjuvant chemoradiation-interim analysis of the German OCUM Trial (NCT01325649) J Gastrointest Surg. 2016;20:25–32. [discussion – 3]
    1. Habr-Gama A., Perez R.O., Nadalin W., Sabbaga J., Ribeiro U., Jr., Silva e Sousa A.H., Jr. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–717. [discussion 7–8]
    1. Habr-Gama A., Perez R.O., Proscurshim I., Campos F.G., Nadalin W., Kiss D. Patterns of failure and survival for nonoperative treatment of stage c0 distal rectal cancer following neoadjuvant chemoradiation therapy. J Gastrointest Surg. 2006;10:1319–1328. [discussion 28–9]
    1. Martens M.H., Maas M., Heijnen L.A., Lambregts D.M., Leijtens J.W., Stassen L.P. Long-term outcome of an organ preservation program after neoadjuvant treatment for rectal cancer. J Natl Cancer Inst. 2016;108
    1. Appelt A.L., Pløen J., Harling H., Jensen F.S., Jensen L.H., Jørgensen J.C.R. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol. 2015;919–27
    1. Renehan A.G., Malcomson L., Emsley R., Gollins S., Maw A., Myint A.S. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2015;2045:1–10.
    1. Francois Y., Nemoz C.J., Baulieux J., Vignal J., Grandjean J.-P., Partensky C. Influence of the interval between preoperative radiation therapy and surgery on downstaging and on the rate of sphincter-sparing surgery for rectal cancer: the Lyon R90–01 randomized trial. J Clin Oncol. 1999;17:2396.
    1. Tulchinsky H., Shmueli E., Figer A., Klausner J.M., Rabau M. An interval >7 weeks between neoadjuvant therapy and surgery improves pathologic complete response and disease-free survival in patients with locally advanced rectal cancer. Ann Surg Oncol. 2008;15:2661–2667.
    1. Kalady M.F., de Campos-Lobato L.F., Stocchi L., Geisler D.P., Dietz D., Lavery I.C. Predictive factors of pathologic complete response after neoadjuvant chemoradiation for rectal cancer. Ann Surg. 2009;250:582–589.
    1. Lefevre J.H., Mineur L., Kotti S., Rullier E., Rouanet P., de Chaisemartin C. Effect of interval (7 or 11 weeks) between neoadjuvant radiochemotherapy and surgery on complete pathologic response in rectal cancer: a multicenter, randomized, controlled trial (GRECCAR-6) J Clin Oncol. 2016;34
    1. Sloothaak D.A.M., Geijsen D.E., van Leersum N.J., Punt C.J.A., Buskens C.J., Bemelman W.A. Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer. Br J Surg. 2013;100:933–939.
    1. Petrelli F., Sgroi G., Sarti E., Barni S. Increasing the interval between neoadjuvant chemoradiotherapy and surgery in rectal cancer: A meta-analysis of published studies. Ann Surg. 2016;263:458–464.
    1. Evans J., Bhoday J., Sizer B., Tekkis P., Swift R., Perez R. Results of a prospective randomised control 6 vs 12 trial: is greater tumour downstaging observed on post treatment MRI if surgery is delayed to 12-weeks versus 6-weeks after completion of neoadjuvant chemoradiotherapy? Ann Oncol. 2016;27(suppl 6):vi149.
    1. Gao Y.-H., Lin J.-Z., An X., Luo J.-L., Cai M.-Y., Cai P.-Q. Neoadjuvant sandwich treatment with oxaliplatin and capecitabine administered prior to, concurrently with, and following radiation therapy in locally advanced rectal cancer: a prospective phase 2 trial. Int J Radiat Oncol Biol Phys. 2014;90:1153–1160.
    1. Garcia-Aguilar J., Chow O.S., Smith D.D., Marcet J.E., Cataldo P.A., Varma M.G. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial. Lancet Oncol. 2015;16:957–966.
    1. Yothers G., O'Connell M.J., Allegra C.J., Kuebler J.P., Colangelo L.H., Petrelli N.J. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol. 2011;29:3768–3774.
    1. Rodel C., Graeven U., Fietkau R., Hohenberger W., Hothorn T., Arnold D. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–989.
    1. An X., Lin X., Wang F.H., Goodman K., Cai P.Q., Kong L.H. Short term results of neoadjuvant chemoradiotherapy with fluoropyrimidine alone or in combination with oxaliplatin in locally advanced rectal cancer: a meta analysis. Eur J Cancer. 2013;49:843–851.
    1. Yang Y.J., Cao L., Li Z.W., Zhao L., Wu H.F., Yue D. Fluorouracil-based neoadjuvant chemoradiotherapy with or without oxaliplatin for treatment of locally advanced rectal cancer: an updated systematic review and meta-analysis. Oncotarget. 2016;7:45513–45524.
    1. O'Connell M.J., Colangelo L.H., Beart R.W., Petrelli N.J., Allegra C.J., Sharif S. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32:1927–1934.
    1. Allegra C.J., Yothers G., O'Connell M.J., Beart R.W., Wozniak T.F., Pitot H.C. Neoadjuvant 5-FU or capecitabine plus radiation with or without oxaliplatin in rectal cancer patients: a phase III randomized clinical trial. J Natl Cancer Inst. 2015;107
    1. Aschele C., Cionini L., Lonardi S., Pinto C., Cordio S., Rosati G. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–2780.
    1. Aschele C., Lonardi S., Cionini L., Pinto C., Cordio S., Rosati G. Final results of STAR-01: a randomized phase III trial comparing preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer. J Clin Oncol. 2016;34 (suppl; abstr 3521)
    1. Deng Y., Chi P., Lan P., Wang L., Chen W., Cui L. Modified FOLFOX6 with or without radiation versus fluorouracil and leucovorin with radiation in neoadjuvant treatment of locally advanced rectal cancer: initial results of the Chinese FOWARC multicenter, open-label, randomized three-arm phase III trial. J Clin Oncol. 2016;34:3300–3307.
    1. Jiao D., Zhang R., Gong Z., Liu F., Chen Y., Yu Q. Fluorouracil-based preoperative chemoradiotherapy with or without oxaliplatin for stage II/III rectal cancer: a 3-year follow-up study. Chin J Cancer Res. 2015;27:588–596.
    1. Francois E., Gourgou-Bourgade S., Azria D., Conroy T., Bouche O., Doyen J. ACCORD12/0405-Prodige 2 phase III trial neoadjuvant treatment in rectal cancer: results after 5 years of follow-up. J Clin Oncol. 2016;34 [suppl 4S; abstr 490]
    1. Schmoll H.J., Haustermans K., Price T., Nordlinger B., Hofheinz R.D., Daisne J.F. PG 6.2 Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine and oxaliplatin vs. capecitabine alone in locally advanced rectal cancer: disease free survival results at interim analysis. Eur J Cancer. 2014;50:S6.
    1. Fokas E., Rodel C. Targeted agents in GI radiotherapy: clinical efficacy and side effects. Best Pract Res Clin Gastroenterol. 2016;30:537–549.
    1. Mohiuddin M., Paulus R., Mitchell E., Hanna N., Yuen A., Nichols R. Neoadjuvant chemoradiation for distal rectal cancer: 5-year updated results of a randomized phase 2 study of neoadjuvant combined modality chemoradiation for distal rectal cancer. Int J Radiat Oncol Biol Phys. 2013;86:523–528.
    1. Dewdney A., Cunningham D., Tabernero J., Capdevila J., Glimelius B., Cervantes A. Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C) J Clin Oncol. 2012;30:1620–1627.
    1. Salazar R., Capdevila J., Laquente B., Manzano J.L., Pericay C., Villacampa M.M. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. BMC Cancer. 2015;15:60.
    1. Crane C.H., Eng C., Feig B.W., Das P., Skibber J.M., Chang G.J. Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2010;76:824–830.
    1. De Haas-Kock D.F., Buijsen J., Pijls-Johannesma M., Lutgens L., Lammering G., van Mastrigt G.A. Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane Database Syst Rev. 2009:CD006269.
    1. Rau B., Benhidjeb T., Wust P., Schlag P.M. Stellenwert der Hyperthermie für die chirurgische Onkologie. Viszeralchirurgie. 2002;37:379–384.
    1. Schroeder C., Gani C., Lamprecht U., von Weyhern C.H., Weinmann M., Bamberg M. Pathological complete response and sphincter-sparing surgery after neoadjuvant radiochemotherapy with regional hyperthermia for locally advanced rectal cancer compared with radiochemotherapy alone. Int J Hyperthermia. 2012;28:707–714.
    1. Gani C., Schroeder C., Heinrich V., Spillner P., Lamprecht U., Berger B. Long-term local control and survival after preoperative radiochemotherapy in combination with deep regional hyperthermia in locally advanced rectal cancer. Int J Hyperthermia. 2016;32:187–192.
    1. Maluta S., Romano M., Dall'oglio S., Genna M., Oliani C., Pioli F. Regional hyperthermia added to intensified preoperative chemo-radiation in locally advanced adenocarcinoma of middle and lower rectum. Int J Hyperthermia. 2010;26:108–117.
    1. HyRec. Neoadjuvant chemoradiation with 5-FU(or capecitabine) and oxaliplatin combined with hyperthermia in rectal cancer (HyRec/NCT01716949).
    1. HT01. Preoperative radiochemotherapy with hyperthermia for locally advanced rectal cancer (HT01/NCT02353858).
    1. Appelt A.L., Ploen J., Vogelius I.R., Bentzen S.M., Jakobsen A. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:74–80.
    1. Burbach J.P., den Harder A.M., Intven M., van Vulpen M., Verkooijen H.M., Reerink O. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol. 2014;113:1–9.
    1. Yamashita H., Takenaka R., Sakumi A., Otomo A., Nakagawa K. Analysis of motion of the rectum during preoperative intensity modulated radiation therapy for rectal cancer using cone-beam computed tomography. Radiat Oncol. 2015;10:2.
    1. Roels S., Slagmolen P., Nuyts J., Lee J.A., Loeckx D., Maes F. Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls. Int J Radiat Oncol Biol Phys. 2009;75:782–790.
    1. Stromberger C., Ghadjar P., Marnitz S., Thieme A.H., Jahn U., Raguse J.D. Comparative treatment planning study on sequential vs. simultaneous integrated boost in head and neck cancer patients: Differences in dose distributions and potential implications for clinical practice. Strahlenther Onkol. 2016;192:17–24.
    1. Kerkmeijer L.G., Fuller C.D., Verkooijen H.M., Verheij M., Choudhury A., Harrington K.J. The MRI-Linear Accelerator Consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol. 2016;6:215.
    1. Joye I., Deroose C.M., Vandecaveye V., Haustermans K. The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol. 2014;113:158–165.
    1. Habr-Gama A., Perez R.O., Wynn G., Marks J., Kessler H., Gama-Rodrigues J. Complete clinical response after neoadjuvant chemoradiation therapy for distal rectal cancer: characterization of clinical and endoscopic findings for standardization. Dis Colon Rectum. 2010;53:1692–1698.
    1. Lim S.G., Kim Y.B., Oh S.Y. Clinical significance of the endoscopic finding in predicting complete tumor response to preoperative chemoradiation therapy in rectal cancer. World J Surgery. 2016
    1. Van der Paardt M.P., Zagers M.B., Beets-Tan R.G., Stoker J., Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269:101–112.
    1. Dworak O., Keilholz L., Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis. 1997;12:19–23.
    1. Patel U.B., Taylor F., Blomqvist L., George C., Evans H., Tekkis P. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol. 2011;29:3753–3760.
    1. Bhoday J., Smith F., Siddiqui M.R., Balyasnikova S., Swift R.I., Perez R. Magnetic resonance tumor regression grade and residual mucosal abnormality as predictors for pathological complete response in rectal cancer postneoadjuvant chemoradiotherapy. Dis Colon Rectum. 2016;59:925–933.
    1. Joye I., Deroose C.M., Vandecaveye V., Haustermans K. The role of diffusion-weighted MRI and 18 F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: A systematic review. Radiother Oncol. 2014;113:158–165.
    1. van Stiphout R.G., Valentini V., Buijsen J., Lammering G., Meldolesi E., van Soest J. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation. Radiother Oncol. 2014;113:215–222.
    1. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., van Stiphout R.G., Granton P. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–446.
    1. Leijenaar R.T., Carvalho S., Hoebers F.J., Aerts H.J., van Elmpt W.J., Huang S.H. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol. 2015;54:1423–1429.
    1. De Cecco C.N., Ciolina M., Caruso D., Rengo M., Ganeshan B., Meinel F.G. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY) 2016;41:1728–1735.
    1. Nie K., Shi L., Chen Q., Hu X., Jabbour S., Yue N. Rectal cancer: assessment of neoadjuvant chemo-radiation outcome based on radiomics of multi-parametric MRI. Am Assoc Cancer Res. 2016 clincanres.2997.015–clincanres.015.
    1. Kuremsky J.G., Tepper J.E., McLeod H.L. Biomarkers for response to neoadjuvant chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys. 2009;74:673–688.
    1. Giralt J., de las Heras M., Cerezo L., Eraso A., Hermosilla E., Velez D. The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol. 2005;74:101–108.
    1. Tan B.R., Thomas F., Myerson R.J., Zehnbauer B., Trinkaus K., Malyapa R.S. Thymidylate synthase genotype-directed neoadjuvant chemoradiation for patients with rectal adenocarcinoma. J Clin Oncol. 2011;29:875–883.
    1. Sprenger T., Rodel F., Beissbarth T., Conradi L.C., Rothe H., Homayounfar K. Failure of downregulation of survivin following neoadjuvant radiochemotherapy in rectal cancer is associated with distant metastases and shortened survival. Clin Cancer Res. 2011;17:1623–1631.
    1. Chow O.S., Kuk D., Keskin M., Smith J.J., Camacho N., Pelossof R. KRAS and combined KRAS/TP53 mutations in locally advanced rectal cancer are independently associated with decreased response to neoadjuvant therapy. Ann Surg Oncol. 2016;23:2548–2555.
    1. Bonner W.M., Redon C.E., Dickey J.S., Nakamura A.J., Sedelnikova O.A., Solier S. GammaH2AX and cancer. Nat Rev Cancer. 2008;8:957–967.
    1. Sedelnikova O.A., Rogakou E.P., Panyutin I.G., Bonner W.M. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res. 2002;158:486–492.
    1. Chowdhury D., Keogh M.C., Ishii H., Peterson C.L., Buratowski S., Lieberman J. Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005;20:801–809.
    1. Keogh M.C., Kim J.A., Downey M., Fillingham J., Chowdhury D., Harrison J.C. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature. 2006;439:497–501.
    1. Downey M., Durocher D. GammaH2AX as a checkpoint maintenance signal. Cell Cycle. 2006;5:1376–1381.
    1. Nakada S., Chen G.I., Gingras A.C., Durocher D. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 2008;9:1019–1026.
    1. Klokov D., MacPhail S.M., Banath J.P., Byrne J.P., Olive P.L. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol. 2006;80:223–229.
    1. Menegakis A., Yaromina A., Eicheler W., Dorfler A., Beuthien-Baumann B., Thames H.D. Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by gammaH2AX staining. Int J Radiat Biol. 2009;85:1032–1041.
    1. Menegakis A., De Colle C., Yaromina A., Hennenlotter J., Stenzl A., Scharpf M. Residual gammaH2AX foci after ex vivo irradiation of patient samples with known tumour-type specific differences in radio-responsiveness. Radiother Oncol. 2015;116:480–485.
    1. Alix-Panabieres C., Schwarzenbach H., Pantel K. Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 2012;63:199–215.
    1. Schwarzenbach H., Hoon D.S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–437.
    1. Agostini M., Pucciarelli S., Enzo M.V., Del Bianco P., Briarava M., Bedin C. Circulating cell-free DNA: a promising marker of pathologic tumor response in rectal cancer patients receiving preoperative chemoradiotherapy. Ann Surg Oncol. 2011;18:2461–2468.
    1. Carpinetti P., Donnard E., Bettoni F., Asprino P., Koyama F., Rozanski A. The use of personalized biomarkers and liquid biopsies to monitor treatment response and disease recurrence in locally advanced rectal cancer after neoadjuvant chemoradiation. Oncotarget. 2015;6:38360–38371.

Source: PubMed

3
Sottoscrivi