How Can Hearing Loss Cause Dementia?

Timothy D Griffiths, Meher Lad, Sukhbinder Kumar, Emma Holmes, Bob McMurray, Eleanor A Maguire, Alexander J Billig, William Sedley, Timothy D Griffiths, Meher Lad, Sukhbinder Kumar, Emma Holmes, Bob McMurray, Eleanor A Maguire, Alexander J Billig, William Sedley

Abstract

Epidemiological studies identify midlife hearing loss as an independent risk factor for dementia, estimated to account for 9% of cases. We evaluate candidate brain bases for this relationship. These bases include a common pathology affecting the ascending auditory pathway and multimodal cortex, depletion of cognitive reserve due to an impoverished listening environment, and the occupation of cognitive resources when listening in difficult conditions. We also put forward an alternate mechanism, drawing on new insights into the role of the medial temporal lobe in auditory cognition. In particular, we consider how aberrant activity in the service of auditory pattern analysis, working memory, and object processing may interact with dementia pathology in people with hearing loss. We highlight how the effect of hearing interventions on dementia depends on the specific mechanism and suggest avenues for work at the molecular, neuronal, and systems levels to pin this down.

Keywords: Alzheimer disease; auditory cognition; dementia; hearing loss; medial temporal lobe.

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Risk of Incident Dementia (Hazard Ratio) as a Function of Hearing Loss The plotted hazard ratio accounts for other risk factors. Reproduced with permission from Lin, F.R., Metter, E.J., O’Brien, R.J., Resnick, S.M., Zonderman, A.B., and Ferrucci, L. (2011). Hearing loss and incident dementia. Arch. Neurol. 68, 214–220. Copyright © 2011 American Medical Association. All rights reserved.
Figure 2
Figure 2
Possible Mechanisms for Dementia Related to Hearing Loss Mechanism 1: common pathology due to Alzheimer disease (AD) or vascular disease affects the cochlea and/or the ascending pathway (causing hearing loss) and MTL (causing dementia). Mechanism 2: impoverished environment caused by hearing loss leads to altered brain structure in the auditory cortex and hippocampus and decreased cognitive reserve, and therefore decreased resilience to dementia. Mechanism 3: increased brain activity in the MTL and a wider network during speech-in-noise analysis competes for the resources within that network that are also needed for other aspects of higher cognition. We argue in the text that this may be a better model for cognitive deficits in elderly people due to hearing loss as opposed to dementia per se. Mechanism 4: interaction between altered activity related to pattern analysis in the MTL during difficult listening and the pathology of AD. The model is based on the same mechanism for increased activity as mechanism 3, but it differs in the incorporation of a specific interaction with the molecular bases of AD. This is based on an interaction between increased activity and synaptic changes associated with AD. We also consider a mechanism in the text due to decreased activity interacting with AD pathology (not shown here). AAC, auditory association cortex; CN, cochlea nucleus; IC, inferior colliculus; MGB, medial geniculate body; MTL, medial temporal lobe; PAC, primary auditory cortex.

References

    1. Adank P. The neural bases of difficult speech comprehension and speech production: two Activation Likelihood Estimation (ALE) meta-analyses. Brain Lang. 2012;122:42–54.
    1. Ahmed M.S., Priestley J.B., Castro A., Stefanini F., Solis Canales A.S., Balough E.M., Lavoie E., Mazzucato L., Fusi S., Losonczy A. Hippocampal Network Reorganization Underlies the Formation of a Temporal Association Memory. Neuron. 2020;107:283–291.e6.
    1. Akeroyd M.A. Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults. Int. J. Audiol. 2008;47(Suppl 2):S53–S71.
    1. Alain C., Du Y., Bernstein L.J., Barten T., Banai K. Listening under difficult conditions: an activation likelihood estimation meta-analysis. Hum. Brain Mapp. 2018;39:2695–2709.
    1. Armstrong N.M., An Y., Doshi J., Erus G., Ferrucci L., Davatzikos C., Deal J.A., Lin F.R., Resnick S.M. Association of Midlife Hearing Impairment With Late-Life Temporal Lobe Volume Loss. JAMA Otolaryngol. Head Neck Surg. 2019:e191610.
    1. Aronov D., Nevers R., Tank D.W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature. 2017;543:719–722.
    1. Atkinson J., Denmark T., Marshall J., Mummery C., Woll B. Detecting Cognitive Impairment and Dementia in Deaf People: The British Sign Language Cognitive Screening Test. Arch. Clin. Neuropsychol. 2015;30:694–711.
    1. Baloyannis S.J., Mauroudis I., Manolides S.L., Manolides L.S. Synaptic alterations in the medial geniculate bodies and the inferior colliculi in Alzheimer’s disease: a Golgi and electron microscope study. Acta Otolaryngol. 2009;129:416–418.
    1. Baloyannis S.J., Manolides S.L., Manolides L.S. Dendritic and spinal pathology in the acoustic cortex in Alzheimer’s disease: morphological estimation in Golgi technique and electron microscopy. Acta Otolaryngol. 2011;131:610–612.
    1. Barascud N., Pearce M.T., Griffiths T.D., Friston K.J., Chait M. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proc. Natl. Acad. Sci. USA. 2016;113:E616–E625.
    1. Barense M.D., Ngo J.K., Hung L.H., Peterson M.A. Interactions of memory and perception in amnesia: the figure-ground perspective. Cereb. Cortex. 2012;22:2680–2691.
    1. Baumann S., Petkov C.I., Griffiths T.D. A unified framework for the organization of the primate auditory cortex. Front. Syst. Neurosci. 2013;7:11.
    1. Bays P.M., Husain M. Dynamic shifts of limited working memory resources in human vision. Science. 2008;321:851–854.
    1. Beckmann D., Feldmann M., Shchyglo O., Manahan-Vaughan D. Hippocampal Synaptic Plasticity, Spatial Memory, and Neurotransmitter Receptor Expression Are Profoundly Altered by Gradual Loss of Hearing Ability. Cereb. Cortex. 2020;30:4581–4596.
    1. Bero A.W., Yan P., Roh J.H., Cirrito J.R., Stewart F.R., Raichle M.E., Lee J.M., Holtzman D.M. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 2011;14:750–756.
    1. Binder J.R., Liebenthal E., Possing E.T., Medler D.A., Ward B.D. Neural correlates of sensory and decision processes in auditory object identification. Nat. Neurosci. 2004;7:295–301.
    1. Bishop C.W., Miller L.M. A multisensory cortical network for understanding speech in noise. J. Cogn. Neurosci. 2009;21:1790–1805.
    1. Bizley J.K., Cohen Y.E. The what, where and how of auditory-object perception. Nat. Rev. Neurosci. 2013;14:693–707.
    1. Blank H., Spangenberg M., Davis M.H. Neural Prediction Errors Distinguish Perception and Misperception of Speech. J. Neurosci. 2018;38:6076–6089.
    1. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259.
    1. Bregman A.S. MIT Press; 1990. Auditory Scene Analysis: The Perceptual Organization of Sound.
    1. Buckley M.J., Booth M.C., Rolls E.T., Gaffan D. Selective perceptual impairments after perirhinal cortex ablation. J. Neurosci. 2001;21:9824–9836.
    1. Bussey T.J., Saksida L.M., Murray E.A. Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur. J. Neurosci. 2002;15:365–374.
    1. Canolty R.T., Edwards E., Dalal S.S., Soltani M., Nagarajan S.S., Kirsch H.E., Berger M.S., Barbaro N.M., Knight R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628.
    1. Chien W., Lin F.R. Prevalence of hearing aid use among older adults in the United States. Arch. Intern. Med. 2012;172:292–293.
    1. Claes A.J., Van de Heyning P., Gilles A., Van Rompaey V., Mertens G. Cognitive outcomes after cochlear implantation in older adults: a systematic review. Cochlear Implants Int. 2018;19:239–254.
    1. Clark R.E., Squire L.R. Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. USA. 2013;110(Suppl 2):10365–10370.
    1. Colgin L.L. Rhythms of the hippocampal network. Nat. Rev. Neurosci. 2016;17:239–249.
    1. Covington N.V., Brown-Schmidt S., Duff M.C. The Necessity of the Hippocampus for Statistical Learning. J. Cogn. Neurosci. 2018;30:680–697.
    1. Davis M.H., Ford M.A., Kherif F., Johnsrude I.S. Does semantic context benefit speech understanding through “top-down” processes? Evidence from time-resolved sparse fMRI. J. Cogn. Neurosci. 2011;23:3914–3932.
    1. de Haan W., Mott K., van Straaten E.C., Scheltens P., Stam C.J. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLOS Comput. Biol. 2012;8:e1002582.
    1. Deal J.A., Betz J., Yaffe K., Harris T., Purchase-Helzner E., Satterfield S., Pratt S., Govil N., Simonsick E.M., Lin F.R., Health ABC Study Group Hearing Impairment and Incident Dementia and Cognitive Decline in Older Adults: The Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:703–709.
    1. Deal J.A., Goman A.M., Albert M.S., Arnold M.L., Burgard S., Chisolm T., Couper D., Glynn N.W., Gmelin T., Hayden K.M. Hearing treatment for reducing cognitive decline: Design and methods of the Aging and Cognitive Health Evaluation in Elders randomized controlled trial. Alzheimers Dement. (N Y) 2018;4:499–507.
    1. Du Y., Buchsbaum B.R., Grady C.L., Alain C. Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nat. Commun. 2016;7:12241.
    1. Eckert M.A., Cute S.L., Vaden K.I., Jr., Kuchinsky S.E., Dubno J.R. Auditory cortex signs of age-related hearing loss. J. Assoc. Res. Otolaryngol. 2012;13:703–713.
    1. Eckert M.A., Teubner-Rhodes S., Vaden K.I., Jr. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions. Ear Hear. 2016;37(Suppl 1):101S–110S.
    1. Erez J., Cusack R., Kendall W., Barense M.D. Conjunctive Coding of Complex Object Features. Cereb. Cortex. 2016;26:2271–2282.
    1. Esiri M.M., Pearson R.C., Powell T.P.S. The cortex of the primary auditory area in Alzheimer’s disease. Brain Res. 1986;366:385–387.
    1. Firth N.C., Primativo S., Marinescu R.-V., Shakespeare T.J., Suarez-Gonzalez A., Lehmann M., Carton A., Ocal D., Pavisic I., Paterson R.W. Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain. 2019;142:2082–2095.
    1. Füllgrabe C., Rosen S. On The (Un)importance of Working Memory in Speech-in-Noise Processing for Listeners with Normal Hearing Thresholds. Front. Psychol. 2016;7:1268.
    1. Gagné J.P., Besser J., Lemke U. Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm. Trends Hear. 2017;21 2331216516687287.
    1. Gallacher J., Ilubaera V., Ben-Shlomo Y., Bayer A., Fish M., Babisch W., Elwood P. Auditory threshold, phonologic demand, and incident dementia. Neurology. 2012;79:1583–1590.
    1. Gatehouse S., Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ) Int. J. Audiol. 2004;43:85–99.
    1. Goll J.C., Kim L.G., Ridgway G.R., Hailstone J.C., Lehmann M., Buckley A.H., Crutch S.J., Warren J.D. Impairments of auditory scene analysis in Alzheimer’s disease. Brain. 2012;135:190–200.
    1. Gorno-Tempini M.L., Brambati S.M., Ginex V., Ogar J., Dronkers N.F., Marcone A., Perani D., Garibotto V., Cappa S.F., Miller B.L. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71:1227–1234.
    1. Götz J., Bodea L.G., Goedert M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 2018;19:583–598.
    1. Griffiths T.D., Warren J.D. What is an auditory object? Nat. Rev. Neurosci. 2004;5:887–892.
    1. Griffiths T.D., Bamiou D.E., Warren J.D. Disorders of the auditory brain. In: Rees A., Palmer A.R., editors. Oxford Handbook of Auditory Science: The Auditory Brain. Oxford University Press; 2010. pp. 509–542.
    1. Hadoux X., Hui F., Lim J.K.H., Masters C.L., Pébay A., Chevalier S., Ha J., Loi S., Fowler C.J., Rowe C. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat. Commun. 2019;10:4227.
    1. Häggström J., Hederstierna C., Rosenhall U., Östberg P., Idrizbegovic E. Prognostic Value of a Test of Central Auditory Function in Conversion from Mild Cognitive Impairment to Dementia. Audiol. Neurotol. 2020 doi: 10.1159/000506621.
    1. Henry K.S., Heinz M.G. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery. Hear. Res. 2013;303:39–47.
    1. Herdener M., Esposito F., di Salle F., Boller C., Hilti C.C., Habermeyer B., Scheffler K., Wetzel S., Seifritz E., Cattapan-Ludewig K. Musical training induces functional plasticity in human hippocampus. J. Neurosci. 2010;30:1377–1384.
    1. Hill K.T., Miller L.M. Auditory attentional control and selection during cocktail party listening. Cereb. Cortex. 2010;20:583–590.
    1. Holmes E., Griffiths T.D. ‘Normal’ hearing thresholds and fundamental auditory grouping processes predict difficulties with speech-in-noise perception. Sci. Rep. 2019;9:16771.
    1. Hughes M.E., Nkyekyer J., Innes-Brown H., Rossell S.L., Sly D., Bhar S., Pipingas A., Hennessy A., Meyer D. Hearing Aid Use in Older Adults With Postlingual Sensorineural Hearing Loss: Protocol for a Prospective Cohort Study. JMIR Res. Protoc. 2018;7:e174.
    1. Hughes S.E., Hutchings H.A., Rapport F.L., McMahon C.M., Boisvert I. Social Connectedness and Perceived Listening Effort in Adult Cochlear Implant Users: A Grounded Theory to Establish Content Validity for a New Patient-Reported Outcome Measure. Ear Hear. 2018;39:922–934.
    1. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. Musical training shapes structural brain development. J. Neurosci. 2009;29:3019–3025.
    1. Ingham N.J., Pearson S.A., Vancollie V.E., Rook V., Lewis M.A., Chen J., Buniello A., Martelletti E., Preite L., Lam C.C. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLOS Biol. 2019;17:e3000194.
    1. Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., Wölfing H., Chieng B.C., Christie M.J., Napier I.A. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–397.
    1. Jack C.R., Jr., Holtzman D.M. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80:1347–1358.
    1. Jack C.R., Wiste H.J., Botha H., Weigand S.D., Therneau T.M., Knopman D.S., Graff-Radford J., Jones D.T., Ferman T.J., Boeve B.F. The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes. Brain. 2019;142:3230–3242.
    1. Jalaei B., Valadbeigi A., Panahi R., Nahrani M.H., Arefi H.N., Zia M., Ranjbar N. Central Auditory Processing Tests as Diagnostic Tools for the Early Identification of Elderly Individuals with Mild Cognitive Impairment. J. Audiol. Otol. 2019;23:83–88.
    1. Jayakody D.M.P., Friedland P.L., Nel E., Martins R.N., Atlas M.D., Sohrabi H.R. Impact of Cochlear Implantation on Cognitive Functions of Older Adults: Pilot Test Results. Otol. Neurotol. 2017;38:e289–e295.
    1. Johnson K.R., Tian C., Gagnon L.H., Jiang H., Ding D., Salvi R. Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci. Rep. 2017;7:44450.
    1. Kahneman D. Prentice-Hall; 1973. Attention and Effort.
    1. Kalluri S., Humes L.E. Hearing technology and cognition. Am. J. Audiol. 2012;21:338–343.
    1. Kalm K., Davis M.H., Norris D. Individual sequence representations in the medial temporal lobe. J. Cogn. Neurosci. 2013;25:1111–1121.
    1. Khan U.A., Liu L., Provenzano F.A., Berman D.E., Profaci C.P., Sloan R., Mayeux R., Duff K.E., Small S.A. Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease. Nat. Neurosci. 2014;17:304–311.
    1. Kocagoncu E., Quinn A., Firouzian A., Cooper E., Greve A., Gunn R., Green G., Woolrich M.W., Henson R.N., Lovestone S., Rowe J.B., Deep and Frequent Phenotyping Study Team Tau pathology in early Alzheimer’s disease is linked to selective disruptions in neurophysiological network dynamics. Neurobiol. Aging. 2020;92:141–152.
    1. Kuiper J.S., Zuidersma M., Oude Voshaar R.C., Zuidema S.U., van den Heuvel E.R., Stolk R.P., Smidt N. Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res. Rev. 2015;22:39–57.
    1. Kumar S., Joseph S., Pearson B., Teki S., Fox Z.V., Griffiths T.D., Husain M. Resource allocation and prioritization in auditory working memory. Cogn. Neurosci. 2013;4:12–20.
    1. Kumar S., Bonnici H.M., Teki S., Agus T.R., Pressnitzer D., Maguire E.A., Griffiths T.D. Representations of specific acoustic patterns in the auditory cortex and hippocampus. Proc. Biol. Sci. 2014;281:20141000.
    1. Kumar S., Joseph S., Gander P.E., Barascud N., Halpern A.R., Griffiths T.D. A Brain System for Auditory Working Memory. J. Neurosci. 2016;36:4492–4505.
    1. Kumar S., Gander P.E., Berger J., Billig A.J., Nourski K.V., Oya H., Kawasaki H., Howard M.A., III, Griffiths T.D. Oscillatory correlates of auditory working memory examined with human electrocorticography. bioRxiv. 2020 doi: 10.1101/2020.06.19.161901.
    1. Kurata N., Schachern P.A., Paparella M.M., Cureoglu S. Histopathologic Evaluation of Vascular Findings in the Cochlea in Patients With Presbycusis. JAMA Otolaryngol. Head Neck Surg. 2016;142:173–178.
    1. Lad M., Holmes E., Chu A., Griffiths T.D. Speech-in-noise detection is related to auditory working memory precision for frequency. bioRxiv. 2020 doi: 10.1101/2020.01.22.915165.
    1. Latimer C.S., Shively C.A., Keene C.D., Jorgensen M.J., Andrews R.N., Register T.C., Montine T.J., Wilson A.M., Neth B.J., Mintz A. A nonhuman primate model of early Alzheimer’s disease pathologic change: Implications for disease pathogenesis. Alzheimers Dement. 2019;15:93–105.
    1. Lewis D.A., Campbell M.J., Terry R.D., Morrison J.H. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J. Neurosci. 1987;7:1799–1808.
    1. Lin F.R., Metter E.J., O’Brien R.J., Resnick S.M., Zonderman A.B., Ferrucci L. Hearing loss and incident dementia. Arch. Neurol. 2011;68:214–220.
    1. Liu K.Y., Gould R.L., Coulson M.C., Ward E.V., Howard R.J. Tests of pattern separation and pattern completion in humans-a systematic review. Hippocampus. 2016;26:705–717.
    1. Liu Y., Fang S., Liu L.M., Zhu Y., Li C.R., Chen K., Zhao H.B. Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice. Neurosci. Lett. 2020;717:134705.
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734.
    1. Loughrey D.G., Kelly M.E., Kelley G.A., Brennan S., Lawlor B.A. Association of Age-Related Hearing Loss With Cognitive Function, Cognitive Impairment, and Dementia: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2018;144:115–126.
    1. Luders E., Gaser C., Jancke L., Schlaug G. A voxel-based approach to gray matter asymmetries. Neuroimage. 2004;22:656–664.
    1. Mably A.J., Colgin L.L. Gamma oscillations in cognitive disorders. Curr. Opin. Neurobiol. 2018;52:182–187.
    1. Mamo S.K., Reed N.S., Sharrett A.R., Albert M.S., Coresh J., Mosley T.H., Knopman D., Lin F.R., Deal J.A. Relationship Between Domain-Specific Cognitive Function and Speech-in-Noise Performance in Older Adults: The Atherosclerosis Risk in Communities Hearing Pilot Study. Am. J. Audiol. 2019;28:1006–1014.
    1. Manohar S.G., Zokaei N., Fallon S.J., Vogels T.P., Husain M. Neural mechanisms of attending to items in working memory. Neurosci. Biobehav. Rev. 2019;101:1–12.
    1. Markham J.A., Greenough W.T. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004;1:351–363.
    1. Martin C.B., Douglas D., Newsome R.N., Man L.L.Y., Barense M.D. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife. 2018;7:e31873.
    1. Martorell A.J., Paulson A.L., Suk H.J., Abdurrob F., Drummond G.T., Guan W., Young J.Z., Kim D.N., Kritskiy O., Barker S.J. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell. 2019;177:256–271.e22.
    1. McCormack A., Fortnum H. Why do people fitted with hearing aids not wear them? Int. J. Audiol. 2013;52:360–368.
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269.
    1. Meck W.H., Church R.M., Olton D.S. Hippocampus, time, and memory. Behav. Neurosci. 1984;98:3–22.
    1. Morris J.C., Price J.L. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. 2001;17:101–118.
    1. Morris E., Chalkidou A., Hammers A., Peacock J., Summers J., Keevil S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:374–385.
    1. Mullally S.L., Intraub H., Maguire E.A. Attenuated boundary extension produces a paradoxical memory advantage in amnesic patients. Curr. Biol. 2012;22:261–268.
    1. Munoz-Lopez M.M., Mohedano-Moriano A., Insausti R. Anatomical pathways for auditory memory in primates. Front. Neuroanat. 2010;4:129.
    1. Neuschwander P., Hänggi J., Zekveld A.A., Meyer M. Cortical thickness of left Heschl’s gyrus correlates with hearing acuity in adults - a surface-based morphometry study. Hear. Res. 2019;384:107823.
    1. Nithianantharajah J., Hannan A.J. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog. Neurobiol. 2009;89:369–382.
    1. Nixon G., Sarant J.Z., Tomlin D., Dowell R. The relationship between peripheral hearing loss and higher order listening function on cognition in older Australians. Int. J. Audiol. 2019;58:933–944.
    1. O’Leary T.P., Shin S., Fertan E., Dingle R.N., Almuklass A., Gunn R.K., Yu Z., Wang J., Brown R.E. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer’s disease. Genes Brain Behav. 2017;16:554–563.
    1. Omata Y., Tharasegaran S., Lim Y.M., Yamasaki Y., Ishigaki Y., Tatsuno T., Maruyama M., Tsuda L. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception. Aging (Albany NY) 2016;8:427–439.
    1. Parvizi J., Van Hoesen G.W., Damasio A. The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann. Neurol. 2001;49:53–66.
    1. Peelle J.E., Troiani V., Grossman M., Wingfield A. Hearing loss in older adults affects neural systems supporting speech comprehension. J. Neurosci. 2011;31:12638–12643.
    1. Pereira J.B., Ossenkoppele R., Palmqvist S., Strandberg T.O., Smith R., Westman E., Hansson O. Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity. Elife. 2019;8:e50830.
    1. Pichora-Fuller M.K., Kramer S.E., Eckert M.A., Edwards B., Hornsby B.W., Humes L.E., Lemke U., Lunner T., Matthen M., Mackersie C.L. Hearing Impairment and Cognitive Energy: The Framework for Understanding Effortful Listening (FUEL) Ear Hear. 2016;37(Suppl 1):5S–27S.
    1. Profant O., Škoch A., Balogová Z., Tintěra J., Hlinka J., Syka J. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Neuroscience. 2014;260:87–97.
    1. Pronk M., Lissenberg-Witte B.I., van der Aa H.P.A., Comijs H.C., Smits C., Lemke U., Zekveld A.A., Kramer S.E. Longitudinal Relationships Between Decline in Speech-in-Noise Recognition Ability and Cognitive Functioning: The Longitudinal Aging Study Amsterdam. J. Speech Lang. Hear. Res. 2019;62(4S):1167–1187.
    1. Rolls E.T. The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 2013;7:74.
    1. Sakon J.J., Suzuki W.A. A neural signature of pattern separation in the monkey hippocampus. Proc. Natl. Acad. Sci. USA. 2019;116:9634–9643.
    1. Sale A., Berardi N., Maffei L. Environment and brain plasticity: towards an endogenous pharmacotherapy. Physiol. Rev. 2014;94:189–234.
    1. Schapiro A.C., Gregory E., Landau B., McCloskey M., Turk-Browne N.B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 2014;26:1736–1747.
    1. Schlaug G., Jäncke L., Huang Y., Steinmetz H. In vivo evidence of structural brain asymmetry in musicians. Science. 1995;267:699–701.
    1. Schneider F., Dheerendra P., Balezeau F., Ortiz-Rios M., Kikuchi Y., Petkov C.I., Thiele A., Griffiths T.D. Auditory figure-ground analysis in rostral belt and parabelt of the macaque monkey. Sci. Rep. 2018;8:17948.
    1. Scott S.K., Rosen S., Wickham L., Wise R.J. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J. Acoust. Soc. Am. 2004;115:813–821.
    1. Sedley W., Gander P.E., Kumar S., Kovach C.K., Oya H., Kawasaki H., Howard M.A., Griffiths T.D. Neural signatures of perceptual inference. eLife. 2016;5:e11476.
    1. Sinha U.K., Hollen K.M., Rodriguez R., Miller C.A. Auditory system degeneration in Alzheimer’s disease. Neurology. 1993;43:779–785.
    1. Solomon P.R., Vander Schaaf E.R., Thompson R.F., Weisz D.J. Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behav. Neurosci. 1986;100:729–744.
    1. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:1006–1012.
    1. Taljaard D.S., Olaithe M., Brennan-Jones C.G., Eikelboom R.H., Bucks R.S. The relationship between hearing impairment and cognitive function: a meta-analysis in adults. Clin. Otolaryngol. 2016;41:718–729.
    1. Teki S., Chait M., Kumar S., von Kriegstein K., Griffiths T.D. Brain bases for auditory stimulus-driven figure-ground segregation. J. Neurosci. 2011;31:164–171.
    1. Teki S., Kumar S., von Kriegstein K., Stewart L., Lyness C.R., Moore B.C., Capleton B., Griffiths T.D. Navigating the auditory scene: an expert role for the hippocampus. J. Neurosci. 2012;32:12251–12257.
    1. Teki S., Chait M., Kumar S., Shamma S., Griffiths T.D. Segregation of complex acoustic scenes based on temporal coherence. eLife. 2013;2:e00699.
    1. Teki S., Barascud N., Picard S., Payne C., Griffiths T.D., Chait M. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence. Cereb. Cortex. 2016;26:3669–3680.
    1. Vaden K.I., Jr., Kuchinsky S.E., Ahlstrom J.B., Teubner-Rhodes S.E., Dubno J.R., Eckert M.A. Cingulo-Opercular Function During Word Recognition in Noise for Older Adults with Hearing Loss. Exp. Aging Res. 2016;42:67–82.
    1. Völter C., Götze L., Dazert S., Falkenstein M., Thomas J.P. Can cochlear implantation improve neurocognition in the aging population? Clin. Interv. Aging. 2018;13:701–712.
    1. Wang R., Reddy P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017;57:1041–1048.
    1. Wang S.E., Wu C.H. Physiological and Histological Evaluations of the Cochlea between 3xTg-AD Mouse Model of Alzheimer’s Diseases and R6/2 Mouse Model of Huntington’s Diseases. Chin. J. Physiol. 2015;58:359–366.
    1. Warren D.E., Duff M.C., Tranel D., Cohen N.J. Observing degradation of visual representations over short intervals when medial temporal lobe is damaged. J. Cogn. Neurosci. 2011;23:3862–3873.
    1. Warren D.E., Duff M.C., Jensen U., Tranel D., Cohen N.J. Hiding in plain view: lesions of the medial temporal lobe impair online representation. Hippocampus. 2012;22:1577–1588.
    1. Warren D.E., Duff M.C., Cohen N.J., Tranel D. Hippocampus contributes to the maintenance but not the quality of visual information over time. Learn. Mem. 2014;22:6–10.
    1. Wayne R.V., Johnsrude I.S. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res. Rev. 2015;23(Pt B):154–166.
    1. Wilsch A., Neuling T., Obleser J., Herrmann C.S. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage. 2018;172:766–774.
    1. Witter M.P., Amaral D.G. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum and parasubiculum. J. Comp. Neurol. 2020 doi: 10.1002/cne.24983.
    1. Yang S.H., Cheng P.H., Banta H., Piotrowska-Nitsche K., Yang J.J., Cheng E.C., Snyder B., Larkin K., Liu J., Orkin J. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature. 2008;453:921–924.
    1. Yeung L.K., Olsen R.K., Hong B., Mihajlovic V., D’Angelo M.C., Kacollja A., Ryan J.D., Barense M.D. Object-in-place memory predicted by anterolateral entorhinal cortex and parahippocampal cortex volume in older adults. J. Cogn. Neurosci. 2019;31:711–729.
    1. Zekveld A.A., Heslenfeld D.J., Festen J.M., Schoonhoven R. Top-down and bottom-up processes in speech comprehension. Neuroimage. 2006;32:1826–1836.

Source: PubMed

3
Sottoscrivi