Low Carbohydrate and Low-Fat Diets: What We Don't Know and Why we Should Know It

Heather Seid, Michael Rosenbaum, Heather Seid, Michael Rosenbaum

Abstract

In the 1940s, the diet-heart hypothesis proposed that high dietary saturated fat and cholesterol intake promoted coronary heart disease in "at-risk" individuals. This hypothesis prompted federal recommendations for a low-fat diet for "high risk" patients and as a preventive health measure for everyone except infants. The low carbohydrate diet, first used to treat type 1 diabetes, became a popular obesity therapy with the Atkins diet in the 1970s. Its predicted effectiveness was based largely on the hypothesis that insulin is the causa prima of weight gain and regain via hyperphagia and hypometabolism during and after weight reduction, and therefore reduced carbohydrate intake would promote and sustain weight loss. Based on literature reviews, there are insufficient randomized controlled inpatient studies examining the physiological significance of the mechanisms proposed to support one over the other. Outpatient studies can be confounded by poor diet compliance such that the quality and quantity of the energy intake cannot be ascertained. Many studies also fail to separate macronutrient quantity from quality. Overall, there is no conclusive evidence that the degree of weight loss or the duration of reduced weight maintenance are significantly affected by dietary macronutrient quantity beyond effects attributable to caloric intake. Further work is needed.

Keywords: carbohydrate; diet; fat; macronutrient; obesity; weight gain; weight loss.

Conflict of interest statement

: The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Possible mechanisms associated with the intake of high fat diet and obesity. (A) A high fat diet causes an alteration in intestinal microbiota from low to high Firmicutes and high to low Bifidobacterium. (B) The low expression of adenosine monophosphate kinase (AMPK) leads to decreased fatty acid oxidation. (C) Fasting induce adipose factor (FIAF) expression causes activation of lipoprotein lipase (LPL) that leads to triglyceride (TG) accumulation. (D) Low glucagon-like peptide 1 (GLP-1) leads to increased insulin resistance and decreased bile acid secretion from liver. (E) Decreased peptide YY (PYY) causes low satiety in obese host. (F) Increased lipogenesis via upregulated acetyl-CoA carboxylase (Acc1) and fatty acid synthase (Fas) enzymes. (G) The activation of endo cannabinoid loop via release of lipopolysaccharide (LPS) due to damages intestinal epithelium. (H) The modulation of intestinal immune response via toll-like receptor 5 (TLR-5) downstream signaling. (I) The systemic inflammation caused by inflammatory cytokines and bacterial. (Reprinted from Dahiya et al. [23]). Cpt-1 - carnitine palmitoyltransferase, GPR – G-protein coupled receptors, FXR – Farnesoid X Receptor.
Figure 2
Figure 2
Schematic of the insulin-carbohydrate model. Increased carbohydrate intake promotes increased insulin secretion resulting in depletion of circulating concentrations of metabolic fuels that are used in lipogenesis. The decreased circulating glucose and lipids results in adaptive thermogenesis and hyperphagia which promote weight gain or regain (Based on Ludwig [6]).
Figure 3
Figure 3
Meta-analysis of the effects of diet low in fat or carbohydrate on energy expenditure in isocaloric studies. Overall, energy expenditure is significantly higher on the low-fat diet (p < 0.0001) but the actual value is only 26 Kcal/day. (Reprinted from Hall and Guo [32]).

References

    1. Adult Obesity Facts. [(accessed on 1 August 2019)];2018 Aug 13; Available online: .
    1. Djalalinia S., Qorbani M., Peykari N., Kelishadi R. Health impacts of obesity. Pak. J. Med. Sci. 2015;1:239–242. doi: 10.12669/pjms.311.7033.
    1. United States Senate Select Committee on Nutrition and Human Needs . Dietary Goals for the United States. U.S. Government Printing Office; Washington, DC, USA: 1977.
    1. Watts M., Hager M., Toner C. The art of translating nutritional science into dietary guidance: History and evolution of the Dietary Guidelines for Americans. Nutr. Rev. 2011;69:404–412. doi: 10.1111/j.1753-4887.2011.00408.x.
    1. Gow M.L., Ho M., Burrows T.L., Baur L.A., Hutchesson M.J., Cowell C.T., Collins C.E., Garnett S.P. Impact of dietary macronutrient distribution on BMI and cardiometabolic outcomes in overweight and obese children and adolescents: A systematic review. Nutr. Rev. 2014;72:453–470. doi: 10.1111/nure.12111.
    1. Ludwig D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287:2414–2423. doi: 10.1001/jama.287.18.2414.
    1. Ludwig D.S., Ebbeling C.B. The carbohydrate-insulin model of obesity: Beyond “calories in, calories out”. JAMA Intern. Med. 2018;178:1098–1103. doi: 10.1001/jamainternmed.2018.2933.
    1. Hall K.D., Guyenet S.J., Leibel R.L. The carbohydrate-insulin model of obesity is difficult to reconcile with current evidence. JAMA Intern. Med. 2018;178:1103–1105. doi: 10.1001/jamainternmed.2018.2920.
    1. Cooder H.R. Epilepsy in children-with particular reference to the ketogenic diet. Calif. J. West Med. 1933;39:169–173.
    1. Allen F.M., Fitz R., Stillman E. Total Dietary Regulation in the Treatment of Diabetes. Rockefeller Institute for Medical Research; New York, NY, USA: 1919.
    1. Leibel R.L., Hirsch J., Appel B.E., Checani G.C. Energy intake required to maintain body weight is not affected by wide variation in diet composition. Am. J. Clin. Nutr. 1992;55:350–355. doi: 10.1093/ajcn/55.2.350.
    1. Hall K.D. A review of the carbohydrate-insulin model of obesity. Eur. J. Clin. Nutr. 2017;71:323–326. doi: 10.1038/ejcn.2016.260.
    1. Ebbeling C.B., Swain J.F., Feldman H.A., Wong W.W., Hachey D.L., Garcia-Lago E., Ludwig D.S. Effects of dietary composition on energy expenditure during weight loss maintenance. JAMA. 2012;307:2627–2634. doi: 10.1001/jama.2012.6607.
    1. Makris A., Foster G.D. Dietary approaches to the treatment of obesity. Psychiatr. Clin. N. Am. 2011;34:813–827. doi: 10.1016/j.psc.2011.08.004.
    1. Oppenheimer G.M. Becoming the Framingham Study 1947-1950. Am. J. Public Health. 2005;95:602–610. doi: 10.2105/AJPH.2003.026419.
    1. Keys A. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease. Harvard University Press; Cambridge, MA, USA: 1980.
    1. Keys A., Keys M. How to Eat Well and Stay Well the Mediterranean Way. Doubleday; New York, NY, USA: 1975.
    1. La Berge A.F. How the ideology of low fat conquered America. J. Hist. Med. Allied Sci. 2008;63:139–177. doi: 10.1093/jhmas/jrn001.
    1. Report by the Central Committee for Medical and Community Program of the American Heart Association. Dietary fat and its relation to heart attacks and strokes. JAMA. 1961;175:389–391. doi: 10.1001/jama.1961.63040050001011.
    1. Levy D., Brink S. A Change of Heart. Knopf; New York, NY, USA: 2005.
    1. Jéquier E. Nutrient effects: Post-absorptive interactions. Proc. Nutr. Soc. 1995;54:253–265. doi: 10.1079/PNS19950052.
    1. Bray G.A., Popkin B.M. Dietary fat does affect obesity! Am. J. Clin. Nutr. 1998;68:1157–1173. doi: 10.1093/ajcn/68.6.1157.
    1. Dahiya D.K., Puniya M., Shandilya U.K., Dhewa T., Kumar N., Kumar S., Puniya A.K., Shukla P. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review. Front. Microbiol. 2017;8:563. doi: 10.3389/fmicb.2017.00563.
    1. Jéquier E., Tappy L. Regulation of body weight in humans. Physiol. Rev. 1999;79:451–480. doi: 10.1152/physrev.1999.79.2.451.
    1. Yu Y.H. Making sense of metabolic obesity and hedonic obesity. J. Diabetes. 2017;9:656–666. doi: 10.1111/1753-0407.12529.
    1. Duffey K.J., Popkin B.M. Energy density, portion size, and eating occasions: Contributions to increased energy intake in the United States. PLoS Med. 2011;8:e1001050. doi: 10.1371/journal.pmed.1001050.
    1. Rosenbaum M., Leibel R.L. Models of energy homeostasis in response to maintenance of reduced body weight. Obesity. 2016;24:1620–1629. doi: 10.1002/oby.21559.
    1. Straznicky M., Lambert E., Nestel P., McGrane M., Dawood T., Schlaich M., Masuo K., Eikelis N., de Courten B., Mariani J., et al. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects. Diabetes. 2010;59:71–79. doi: 10.2337/db09-0934.
    1. Rosenbaum M., Leibel R.L. 20 years of leptin: Role of leptin in energy homeostasis in humans. J. Endocrinol. 2014;223:T83–T96. doi: 10.1530/JOE-14-0358.
    1. Thearle M.S., Panacciulli N., Bonfiglio S., Pacak K., Krakoff J. Extent and determinants of thermogenic responses to 24 hours of fasting, energy balance, and five different overfeeding diets in humans. J. Clin. Endocrinol. Metab. 2013;98:2791–2799. doi: 10.1210/jc.2013-1289.
    1. Horton T.J., Drougas H., Brachey A., Reed G.W., Peters J.C., Hill J.O. Fat and carbohydrate overfeeding in humans: Different effects on energy storage. Am. J. Clin. Nutr. 1995;62:19–29. doi: 10.1093/ajcn/62.1.19.
    1. Hall K.D., Guo J. Obesity energetics: Body weight regulation and effects of diet composition. Gastroenterology. 2017;152:1718–1727. doi: 10.1053/j.gastro.2017.01.052.
    1. Hall K.D., Chen K.Y., Guo J., Lam Y.Y., Leibel R.L., Mayer L.E., Reitman M.L., Rosenbaum M., Smith S.R., Walsh B.T., et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016;104:324–333. doi: 10.3945/ajcn.116.133561.
    1. Ryan D.H., Espeland M.A., Foster G.D., Haffner S.M., Hubbard V.S., Johnson K.C., Kahn S.E., Knowler W.C., Yanovski S.Z. The Look AHEAD Research Group. Look AHEAD (Action for Health in Diabetes): Design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control. Clin. Trials. 2003;24:610–628.
    1. Wadden T.A., Berkowitz R.I., Womble L.G., Sarwer D.B., Phelan S., Cato R.K., Hesson L.A., Osei S.Y., Kaplan R., Stunkard A.J. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N. Eng. J. Med. 2005;353:2111–2120. doi: 10.1056/NEJMoa050156.
    1. Kraschnewski J.L., Boan J., Esposito J., Sherwood N.E., Lehman E.B., Kephart D.K., Sciamanna C.N. Long-term weight loss maintenance in the United States. Int. J. Obes. 2010;34:1644–1654. doi: 10.1038/ijo.2010.94.
    1. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005;82:222S–225S. doi: 10.1093/ajcn/82.1.222S.
    1. Phelan S., Wing R.R. Prevalence of successful weight loss. Arch. Int. Med. 2005;165:2430. doi: 10.1001/archinte.165.20.2430-a.
    1. Ebbeling C.B., Feldman H.A., Klein G.L., Wong J.M.W., Bielak L., Steltz S.K., Luoto P.K., Wolfe R.R., Wong W.W., Ludwig D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: Randomized trial. BMJ. 2018;363:k4583. doi: 10.1136/bmj.k4583.
    1. Guo J., Robinson J.L., Gardner C.D., Hall K.D. Objective versus self-reported energy changes during low-carbohydrate and low-fat diets. Obesity. 2019;27:420–426. doi: 10.1002/oby.22389.
    1. Wycherley T.P., Moran J.L., Clifton P.M., Noakes M., Brinkworth G.D. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low fat diets: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012;96:1281–1298. doi: 10.3945/ajcn.112.044321.
    1. Boden G., Sargrad K., Homko C., Mozzoli M., Stein T.P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 2005;142:403–411. doi: 10.7326/0003-4819-142-6-200503150-00006.
    1. Wolever T.M., Chaisson J.L., Josse R.G., Leiter L.A., Maheux P., Rabasa-Lhoret R., Rodger N.W., Ryan E.A. Effects of changing the amount and source of dietary carbohydrates on symptoms and dietary satisfaction over a 1-year period in subjects with type 2 diabetes: Canadian Trial of Carbohydrates in Diabetes (CCD) Can. J. Diabetes. 2017;41:164–176. doi: 10.1016/j.jcjd.2016.08.223.
    1. Hu T., Yao L., Reynolds K., Niu T., Li S., Whelton P., He J., Bazzano L. The effects of a low-carbohydrate diet on appetite: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2016;26:476–488. doi: 10.1016/j.numecd.2015.11.011.
    1. Greenberg I., Stampfer M.J., Schwarzfuchs D., Shai I., DIRECT Group Adherence and success in long-term weight loss diets: The dietary intervention randomized controlled trial (DIRECT) J. Am. Coll. Nutr. 2009;2:159–168. doi: 10.1080/07315724.2009.10719767.
    1. Gardner C.D., Trepanowski J.F., Del Gobbo L.C., Hauser M.E., Rigdon J., Ioannidis J.P.A., Desai M., King A.C. Effects of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA. 2018;319:667–679. doi: 10.1001/jama.2018.0245.
    1. Freedhoff Y., Hall K.D. Weight loss diet studies: We need help not hype. Lancet. 2016;388:849–851. doi: 10.1016/S0140-6736(16)31338-1.
    1. Tatano H., Yamanaka-Okumura H., Zhou B., Adachi C., Kawakami Y., Katayama T., Masuda M., Takeda E., Taketani Y. Association of habitual high-fat intake and desire for protein and sweet food. J. Med. Investig. 2016;63:241–247. doi: 10.2152/jmi.63.241.
    1. MacLean P.S., Bergouignan A., Cornier M.A., Jackman M.R. Biology’s response to dieting: The impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;301:R581–R600. doi: 10.1152/ajpregu.00755.2010.
    1. Andriessen C., Christensen P., Vestergaard Nielsen L., Ritz C., Astrup A., Meinert Larsen T., Martinez J.A., Saris W.H.M., van Baak M.A., Papadaki A., et al. Weight loss decreases self-reported appetite and alters food preferences in overweight and obese adults: Observational data from the DiOGenes study. Appetite. 2018;25:314–322. doi: 10.1016/j.appet.2018.02.016.
    1. Kissileff H.R., Thornton J.C., Torres M.I., Pavlovich K., Mayer L.S., Kalari V., Leibel R.L., Rosenbaum M. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 2012;95:309–319. doi: 10.3945/ajcn.111.012385.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A., Proietto J. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 2011;365:1597–1604. doi: 10.1056/NEJMoa1105816.
    1. Gibson A.A., Seimon R.V., Lee C.M., Ayre J., Franklin J., Markovic T.P., Caterson I.D., Sainsbury A. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes. Rev. 2015;16:64–79. doi: 10.1111/obr.12230.
    1. Mohorko N., Černelič-Bizjak M., Poklar-Vatovec T., Grom G., Kenig S., Petelin A., Jenko-Pražnikar Z. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res. 2019;62:64–77. doi: 10.1016/j.nutres.2018.11.007.
    1. Malik V.S., Schulze M.B., Hu F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006;84:274–288. doi: 10.1093/ajcn/84.2.274.
    1. Bray G.A., Paeratakul S., Popkin B.M. Dietary fat and obesity: A review of animal, clinical, and epidemiological studies. Physiol. Behav. 2004;83:549–555. doi: 10.1016/j.physbeh.2004.08.039.
    1. Schulze M.B., Manson J.E., Ludwig D.S., Colditz G.A., Stampfer M.J., Willett W.C., Hu F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA. 2004;292:927–934. doi: 10.1001/jama.292.8.927.
    1. Sartorius K., Sartorius B., Madiba T.E., Stefan C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ Open. 2018;8:e018449. doi: 10.1136/bmjopen-2017-018449.
    1. Foster G.D., Wyatt H.R., Hill J.O., Makris A.P., Rosenbaum D.L., Brill C., Stein R.I., Mohammed B.S., Miller B., Rader D.J., et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: A randomized trial. Ann. Int. Med. 2010;153:147–157. doi: 10.7326/0003-4819-153-3-201008030-00005.
    1. Hall K.D., Bemis T., Brychta R., Chen K.Y., Courville A., Crayner E.J., Goodwin S., Guo J., Howard L., Knuth N.D., et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22:427–436. doi: 10.1016/j.cmet.2015.07.021.
    1. Sacks F.M., Bray G.A., Carey V.J., Smith S.R., Ryan D.H., Anton S.D., McManus K., Champagne C.M., Bishop L.M., Laranjo N., et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009;306:859–873. doi: 10.1056/NEJMoa0804748.
    1. Sackner-Bernstein J., Kanter D., Kaul S. Dietary intervention for overweight and obese adults: Comparison of low-carbohydrate and low-fat diets. A meta-analysis. PLoS ONE. 2015;10:e0139817. doi: 10.1371/journal.pone.0139817.
    1. Johnston B.C., Kanters S., Bandayrel K., Wu P., Naji F., Siemieniuk R.A., Ball G.D., Busse J.W., Thorlund K., Guyatt G. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA. 2014;312:923–933. doi: 10.1001/jama.2014.10397.
    1. Bueno N.B., de Melo I.S., de Oliveria S.L., da Rocha Ataide T. very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of randomized controlled trials. Br. J. Nutr. 2013;110:1178–1187. doi: 10.1017/S0007114513000548.
    1. Hu T., Mills K.T., Yao L., Demanelis K., Eloustaz M., Yancy W.S., Jr., Kelly T.N., He J., Bazzano L.A. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2012;176:S44–S54. doi: 10.1093/aje/kws264.
    1. Lecheminant J.D., Gibson C.A., Sullivan D.K., Hall S., Washburn R., Vernon M.C., Curry C., Setwart E., Westman E.C., Donnelly J.E. Comparison of a low carbohydrate and low fat diet for weight maintenance in overweight or obese adults enrolled in a clinical weight management program. Nutr. J. 2007;6:36. doi: 10.1186/1475-2891-6-36.
    1. Fogelholm M., Anderssen S., Gunnarsdottir I., Lahti-Koski M. Dietary macronutrients and food consumption as determinants of long-term weight change in adult populations: A systematic literature review. Food Nutr. Res. 2012;56 doi: 10.3402/fnr.v56i0.19103.
    1. Brinkworth G.D., Noakes M., Buckley J.D., Keogh J.B., Clifton P.M. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo. Am. J. Clin. Nutr. 2009;90:23–32. doi: 10.3945/ajcn.2008.27326.
    1. Delbridge E.A., Prendergas L.A., Pritchard J.E., Proietto J. One-year weight maintenance after significant weight loss in healthy overweight and obese subjects: Does diet composition matter? Am. J. Clin. Nutr. 2009;90:1203–1214. doi: 10.3945/ajcn.2008.27209.
    1. Dale K.S., McAuley K.A., Taylor R.A., Williams S.M., Farmer V.L., Hansen P., Vorgers S.M., Chisholm A.W., Mann J.I. Determining optimal approaches for weight maintenance: A randomized controlled trial. CMAJ. 2009;180:E39–E46. doi: 10.1503/cmaj.080974.
    1. Due A., Larsen T.M., Mu H., Hermansen K., Stender S., Astrup A. Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes; a 6-mo randomized, controlled trial. Am. J. Clin. Nutr. 2008;88:1232–1241. doi: 10.3945/ajcn.2007.25695.
    1. Swinburn B.A., Metcalf P.A., Ley S.J. Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care. 2001;24:619–624. doi: 10.2337/diacare.24.4.619.
    1. Larsen T.M., Dalskov S.M., van Baak M., Jebb S.A., Papadaki A., Pfeiffer A.F., Martinez J.A., Handjieva-Darlenska T., Kunešová M., Philsgård M., et al. Diet Obesity and Genes (Diogenes) Project. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010;363:2102–2113. doi: 10.1056/NEJMoa1007137.
    1. Yancy W.S., Jr., Mayer S.B., Coffman C.J., Smith V.A., Kolotkin R.L., Geiselman P.J., McVay M.A., Oddone E.Z., Volis C.I. Effect of allowing choice of diet on weight loss: A randomized trail. Ann. Intern. Med. 2015;162:805–814. doi: 10.7326/M14-2358.
    1. Kirkpatrick C.F., Bolick J.P., Kris-Etherton P.M., Sikand G., Aspry K.E., Soffer D.E., Willard K.E., Maki K.C. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J. Clin. Lipidol. 2019:S1933–S2874. doi: 10.1016/j.jacl.2019.08.003.
    1. Rosenbaum M., Hall K.D., Guo J., Ravussin E., Mayer L.S., Reitman M.L., Smith S.R., Walsh B.T., Leibel R.L. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity. 2019;27:971–981. doi: 10.1002/oby.22468.
    1. Hussain T.A., Mathew T.C., Dashti A.A., Asfar S., Al-Zaid N., Dashti H.M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28:1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Samaha F.F., Iqbal N., Seshadri P., Chicano K.L., Daily D.A., McGrory J., Williams T., Williams M., Gracely E.J., Stern L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 2003;348:2074–2081. doi: 10.1056/NEJMoa022637.
    1. Nielsen J.V., Jönsson E., Nilsson A.K. Lasting improvement of hyperglycaemia and bodyweight: Low-carbohydrate diet in type 2 diabetes- a brief report. Upsala J. Med. Sci. 2005;110:69–73. doi: 10.3109/2000-1967-182.
    1. Tay J., Thompson C.H., Luscombe-Marsh N.D., Wycherley T.P., Noakes M., Buckley J.D., Wittert G.A., Yancy W.S., Jr., Brinkworth G.D. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial. Diabetes Obes. Metab. 2018;20:858–871. doi: 10.1111/dom.13164.
    1. Hall K.D., Ayuketah A., Brychta R., Cai H., Cassimatis T., Chen K.Y., Chung S.T., Costa E., Courville A., Darcey V. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019;30:67–77. doi: 10.1016/j.cmet.2019.05.008.
    1. Stanhope K.L., Goran M.I., Bosy-Westphal A., King J.C., Schmidt L.A., Schwarz J.M., Stice E., Sylvetsky A.C., Turnbaugh P.J., Bray G.A., et al. Pathways and mechanisms linking dietary components to cardiometabolic disease: Thinking beyond calories. Obes. Rev. 2018;19:1205–1235. doi: 10.1111/obr.12699.
    1. Livesey G., Taylor R., Livesey H.F., Buyken A.E., Jennkins D.J.A., Augustin L.S.A., Sievenpiper J.L., Barclay A.W., Liu S., Wolever T.M.S., et al. Dietary glycemic index and load and the risk of type 2 diabetes; A systematic review and updated meta-analyses of prospective cohort studies. Nutrients. 2019;11:1280. doi: 10.3390/nu11061280.
    1. Reynolds A., Mann J., Cummings J., Winter N., Mete E., Te Morenga L. Carbohydrate quality and human health: A series of systematic review and meta-analyses. Lancet. 2019;393:434–445. doi: 10.1016/S0140-6736(18)31809-9.
    1. Hjorth M.F., Zohar Y., Hill J.O., Astrup A. Personalized dietary management of overweight and obesity based on measures of insulin and glucose. Annu. Rev. Nutr. 2018;38:245–272. doi: 10.1146/annurev-nutr-082117-051606.
    1. Hallberg S.J., Gershuni V.M., Hazbun T.L., Athinarayanan S.J. Reversing type 2 diabetes: A narrative review of the evidence. Nutrients. 2019;11:766. doi: 10.3390/nu11040766.
    1. Last A.R., Wilson S.A. Low-carbohydrate diets. Am. Fam. Physician. 2006;73:1942–1984.
    1. Atkins R.C. Dr. Atkins’ Diet Revolution; the High Calorie Way to Stay Thin Forever. D. McKay Co; New York, NY, USA: 1972.
    1. Freeman J.M., Kossoff E.H. Ketosis and the ketogenic diet, 2010: Advances in treating epilepsy and other disorders. Adv. Pediatr. 2010;57:315–329. doi: 10.1016/j.yapd.2010.08.003.
    1. Austin G.L., Ogden L.G., Hill J.O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971-2006. Am. J. Clin. Nutr. 2011;83:836–843. doi: 10.3945/ajcn.110.000141.
    1. Subar A.F., Freedman L.S., Tooze J.A., Kirkpatrick S.I., Boushey C., Neuhouser M.L., Thompson F.E., Poitschman N., Guenther P.M., Tarasuk V., et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015;145:2639–2645. doi: 10.3945/jn.115.219634.

Source: PubMed

3
Sottoscrivi