Implementation of a pragmatic randomized trial of screening for chronic kidney disease to improve care among non-diabetic hypertensive veterans

Carmen A Peralta, Martin Frigaard, Anna D Rubinsky, Leticia Rolon, Lowell Lo, Santhi Voora, Karen Seal, Delphine Tuot, Shirley Chao, Kimberly Lui, Phillip Chiao, Neil Powe, Michael Shlipak, Carmen A Peralta, Martin Frigaard, Anna D Rubinsky, Leticia Rolon, Lowell Lo, Santhi Voora, Karen Seal, Delphine Tuot, Shirley Chao, Kimberly Lui, Phillip Chiao, Neil Powe, Michael Shlipak

Abstract

Background: Whether screening for chronic kidney disease (CKD) can improve the care of persons at high risk for complications remains uncertain. We describe the design and early implementation experience of a pilot, cluster-randomized pragmatic trial to evaluate the feasibility, implementation, and effectiveness of a "triple marker" CKD screening program (creatinine, cystatin C and albumin to creatinine ratio) for improving care among hypertensive veterans seen in primary care at one Veterans Administration Hospital.

Methods/design: Non-diabetic hypertensive veterans age 18-80 without known CKD were randomized in clusters determined by primary care provider (unit of randomization) into three arms. Usual care will be compared with two incrementally intensified treatment strategies: (1) screen for CKD followed by patient and provider education or (2) screen-educate plus a clinical pharmacist-led CKD and BP management program. The primary clinical outcome is systolic blood pressure (BP) change from baseline. Secondary clinical outcome is BP control. The primary process outcomes is triple marker screening (across three arms), and secondary process outcomes include use of inhibitors of the renin-angiotensin system (ACE/ARB) overall and in persons with albuminuria, CKD recognition by PCP, use of non-steroidal anti-inflammatory drugs (NSAIDs) and NSAID education by PCP. The design uses the Veterans Health Administration electronic health record (EHR) to identify participants, deliver the interventions and ascertain study outcomes. Assessment of the program implementation will use the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework. Study duration is 12 months.

Results: A total of 1,819 patients have been randomized within 41 provider clusters. The median age (interquartile range) is 68 years (61-72), and 99% of participants are male. Approximately 16% are Black, and 5% Hispanic. In the first 6 months of the trial, 434 triple marker screening tests have been ordered, and 217(50%) have been tested. A total of 48 new CKD cases have been identified among those tested, for a preliminary yield of 22%.

Conclusion: We have successfully implemented a pragmatic protocol that uses the EHR to identify and characterize eligible participants, deliver the intervention, and ascertain study outcomes with high rates of participation by providers and patients. Results from this study can guide design of pragmatic trials in the field of CKD.

Trial registration: NCT01978951 ; Date or Registration: 1/17/2014.

Trial registration: ClinicalTrials.gov NCT01978951 NCT02059408.

Keywords: Blood pressure; Chronic kidney disease; Hypertension; Screening.

Figures

Fig. 1
Fig. 1
Study design
Fig. 2
Fig. 2
Consort diagram for patient inclusion

References

    1. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–2047. doi: 10.1001/jama.298.17.2038.
    1. Peralta CA, Weekley CC, Li Y, Shlipak MG. Occult chronic kidney disease among persons with hypertension in the United States: data from the National Health and Nutrition Surveys 1988-1994 and 1999-2002. J Hypertens. 2013;31(6):1196–1202. doi: 10.1097/HJH.0b013e328360ae2d.
    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. doi: 10.1056/NEJMoa041031.
    1. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–352. doi: 10.1016/S0140-6736(13)60595-4.
    1. Torres RV, Elias MF, Seliger S, Davey A, Robbins MA. Risk for cognitive impairment across 22 measures of cognitive ability in early-stage chronic kidney disease. Nephrol Dial Transplant. 2017;32(2):299–306.
    1. Davey A, Elias MF, Robbins MA, Seliger SL, Dore GA. Decline in renal functioning is associated with longitudinal decline in global cognitive functioning, abstract reasoning and verbal memory. Nephrol Dial Transplant. 2013;28(7):1810–1819. doi: 10.1093/ndt/gfs470.
    1. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–830. doi: 10.7326/0003-4819-158-11-201306040-00007.
    1. Plantinga LC, Boulware LE, Coresh J, et al. Patient awareness of chronic kidney disease: trends and predictors. Arch Intern Med. 2008;168(20):2268–2275. doi: 10.1001/archinte.168.20.2268.
    1. Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA. 2003;290(23):3101–3114. doi: 10.1001/jama.290.23.3101.
    1. Hoerger TJ, Wittenborn JS, Segel JE, et al. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. Am J Kidney Dis. 2010;55(3):463–473. doi: 10.1053/j.ajkd.2009.11.017.
    1. Hoerger TJ, Wittenborn JS, Zhuo X, et al. Cost-effectiveness of screening for microalbuminuria among African Americans. J Am Soc Nephrol. 2012;23(12):2035–2041. doi: 10.1681/ASN.2012040347.
    1. Manns B, Hemmelgarn B, Tonelli M, et al. Population based screening for chronic kidney disease: cost effectiveness study. BMJ. 2010;341:c5869. doi: 10.1136/bmj.c5869.
    1. Fink HA, Ishani A, Taylor BC, et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the U.S. Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2012;156(8):570–581. doi: 10.7326/0003-4819-156-8-201204170-00008.
    1. Jolly SE, Navaneethan SD, Schold JD, et al. Chronic kidney disease in an electronic health record problem list: quality of care, ESRD, and mortality. Am J Nephrol. 2014;39(4):288–296. doi: 10.1159/000360306.
    1. Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305(15):1545–1552. doi: 10.1001/jama.2011.468.
    1. Shlipak MG, Matsushita K, Arnlov J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–943. doi: 10.1056/NEJMoa1214234.
    1. Peralta CA, Katz R, Sarnak MJ, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. J Am Soc Nephrol. 2011;22(1):147–155. doi: 10.1681/ASN.2010050483.
    1. Glynn LG, Murphy AW, Smith SM, Schroeder K, Fahey T. Interventions used to improve control of blood pressure in patients with hypertension. Cochrane Database Syst Rev. 2010;3:CD005182.
    1. Carter BL, Rogers M, Daly J, Zheng S, James PA. The potency of team-based care interventions for hypertension: a meta-analysis. Arch Intern Med. 2009;169(19):1748–1755. doi: 10.1001/archinternmed.2009.316.
    1. Margolis KL, Asche SE, Bergdall AR, et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310(1):46–56. doi: 10.1001/jama.2013.6549.
    1. de Boer IH, Kovesdy CP, Navaneethan SD, et al. Pragmatic clinical trials in CKD: opportunities and challenges. J Am Soc Nephrol. 2016;27(10):2948–2954. doi: 10.1681/ASN.2015111264.
    1. Gaglio B, Shoup JA, Glasgow RE. The RE-AIM framework: a systematic review of use over time. Am J Public Health. 2013;103(6):e38–e46. doi: 10.2105/AJPH.2013.301299.
    1. Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322–1327. doi: 10.2105/AJPH.89.9.1322.
    1. Samal L, Linder JA, Bates DW, Wright A. Electronic problem list documentation of chronic kidney disease and quality of care. BMC Nephrol. 2014;15:70. doi: 10.1186/1471-2369-15-70.
    1. Navaneethan SD, Jolly SE, Schold JD, et al. Development and validation of an electronic health record-based chronic kidney disease registry. Clin J Am Soc Nephrol. 2011;6(1):40–49. doi: 10.2215/CJN.04230510.
    1. . 2017. Accessed 1 Jan 2017.
    1. al. KLe. PRECIS-2 Wheel. British Medical Journal Publishing Group. 2015. .

Source: PubMed

3
Sottoscrivi