Inhaled Anesthetics: Environmental Role, Occupational Risk, and Clinical Use

Mariana Gaya da Costa, Alain F Kalmar, Michel M R F Struys, Mariana Gaya da Costa, Alain F Kalmar, Michel M R F Struys

Abstract

Inhaled anesthetics have been in clinical use for over 150 years and are still commonly used in daily practice. The initial view of inhaled anesthetics as indispensable for general anesthesia has evolved during the years and, currently, its general use has even been questioned. Beyond the traditional risks inherent to any drug in use, inhaled anesthetics are exceptionally strong greenhouse gases (GHG) and may pose considerable occupational risks. This emphasizes the importance of evaluating and considering its use in clinical practices. Despite the overwhelming scientific evidence of worsening climate changes, control measures are very slowly implemented. Therefore, it is the responsibility of all society sectors, including the health sector to maximally decrease GHG emissions where possible. Within the field of anesthesia, the potential to reduce GHG emissions can be briefly summarized as follows: Stop or avoid the use of nitrous oxide (N2O) and desflurane, consider the use of total intravenous or local-regional anesthesia, invest in the development of new technologies to minimize volatile anesthetics consumption, scavenging systems, and destruction of waste gas. The improved and sustained awareness of the medical community regarding the climate impact of inhaled anesthetics is mandatory to bring change in the current practice.

Keywords: climate change; environment; inhaled anesthetics; occupational health; patient risk.

Conflict of interest statement

Michel MRF Struys research group/department received (over the last 3 years) research grants and consultancy fees from The Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Becton Dickinson (Eysins, Switzerland), Fresenius (Bad Homburg, Germany), Dräger (Lübeck, Germany), Paion (Aachen, Germany), Medtronic (Dublin, Ireland), Medcaptain Europe (Andelst, The Netherlands). He receives royalties on intellectual property from Demed Medical (Temse, Belgium) and the Ghent University (Gent, Belgium), not related to the topic of this article.

Figures

Figure 1
Figure 1
Atmospheric absorption bands. Modified from an image obtained from the Wikimedia website, available under a CC-BY-SA 3.0 license, and included in this review on this basis.
Figure 2
Figure 2
Schematic view of the three different perspectives in choosing an anesthesia technique. Abbreviations: N2O: Nitrous oxide; TIVA: Total intravenous anesthesia; WAG: Waste anesthetic gas.

References

    1. Erving H.W. The Discoverer of Anæsthesia: Dr. Horace Wells of Hartford. Yale J. Biol. Med. 1933;5:421–430.
    1. Anesthetic Gases: Guidelines for Workplace Exposures|Occupational Safety and Health Administration. [(accessed on 5 December 2019)]; Available online:
    1. Watts N., Amann M., Arnell N., Ayeb-Karlsson S., Belesova K., Boykoff M., Byass P., Cai W., Campbell-Lendrum D., Capstick S., et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet. 2019;394:1836–1878.
    1. Global Climate Report-Annual 2018|State of the Climate|National Centers for Environmental Information (NCEI) [(accessed on 30 October 2019)]; Available online: .
    1. Global Warming of 1.5 °C. [(accessed on 30 October 2019)]; Available online:
    1. Atmospheric Window—An Overview|ScienceDirect Topics. [(accessed on 9 December 2019)]; Available online: .
    1. Causes|Facts—Climate Change: Vital Signs of the Planet. [(accessed on 26 November 2019)]; Available online:
    1. WHO WHO Calls for Urgent Action to Protect Health from Climate Change—Sign the Call. [(accessed on 28 October 2019)];2016 Available online: .
    1. Smith K.R., Woodward A., Campbell-Lendrum D., Chadee Trinidad D.D., Honda Y., Liu Q., Olwoch J.M., Revich B., Sauerborn R. Human Health: Impacts, Adaptation, and Co-Benefits. In: Field C.B., Barros V.R., Dokken D.J., Mach K.J., Mastrandrea M.D., Bilir T.E., Chatterjee M., Ebi K.L., Estrada Y.O., Genova R.C., et al., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: 2014. pp. 709–754.
    1. Watts N., Amann M., Arnell N., Ayeb-Karlsson S., Belesova K., Berry H., Bouley T., Boykoff M., Byass P., Cai W., et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet. 2018;392:2479–2514.
    1. The EU Healthcare Sector Is a Major Contributor to the Climate Crisis|Health Care Without Harm. [(accessed on 20 November 2019)]; Available online: .
    1. Pichler P.-P., Jaccard I.S., Weisz U., Weisz H. International comparison of health care carbon footprints. Environ. Res. Lett. 2019;14:064004. doi: 10.1088/1748-9326/ab19e1.
    1. Chung J.W., Meltzer D.O. Estimate of the carbon footprint of the US health care sector. JAMA J. Am. Med. Assoc. 2009;302:1970–1972.
    1. Raga Mexico G., Nakajima T., Ramanathan V., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D., Haywood J., Lean J., et al. The Physical Science Basis. Contribution of Working Group I. [(accessed on 29 October 2019)];2007 Available online: .
    1. Ryan S.M., Nielsen C.J. Global warming potential of inhaled anesthetics: Application to clinical use. Anesth. Analg. 2010;111:92–98. doi: 10.1213/ANE.0b013e3181e058d7.
    1. Khan K.S., Hayes I., Buggy D.J. Pharmacology of anaesthetic agents II: Inhalation anaesthetic agents. Contin. Educ. Anaesth. Crit. Care Pain. 2014;14:106–111. doi: 10.1093/BJACEACCP/MKT038.
    1. Campbell M., Pierce J.M.T. Atmospheric science, anaesthesia, and the environment. BJA Educ. 2015;15:173–179. doi: 10.1093/bjaceaccp/mku033.
    1. Langbein T., Sonntag H., Trapp D., Hoffmann A., Malms W., Röth E.P., Mörs V., Zellner R. Volatile anaesthetics and the atmosphere: Atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br. J. Anaesth. 1999;82:66–73. doi: 10.1093/bja/82.1.66.
    1. Vollmer M.K., Rhee T.S., Rigby M., Hofstetter D., Hill M., Schoenenberger F., Reimann S. Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 2015;42:1606–1611. doi: 10.1002/2014GL062785.
    1. Inhalation Anesthesia Market Size Worth $1.66bn by 2024: Global Market Insights Inc. [(accessed on 11 December 2019)]; Available online: .
    1. Hanna M., Bryson G.L. A long way to go: Minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. 2019;66:838–839. doi: 10.1007/s12630-019-01348-1.
    1. The Montreal Protocol on Substances That Deplete the Ozone Layer-United States Department of State. [(accessed on 31 October 2019)]; Available online:
    1. Andersen M.P.S., Nielsen O.J., Wallington T.J., Karpichev B., Sander S.P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 2012;114:1081–1085.
    1. MacNeill A.J., Lillywhite R., Brown C.J. The impact of surgery on global climate: A carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health. 2017;1:e360–e367. doi: 10.1016/S2542-5196(17)30162-6.
    1. Özelsel T.J.P., Sondekoppam R.V., Buro K. The future is now—it’s time to rethink the application of the Global Warming Potential to anesthesia. Can. J. Anesth. 2019;66:1291–1295. doi: 10.1007/s12630-019-01385-w.
    1. Life Cycle Assessment—An Overview|ScienceDirect Topics. [(accessed on 11 November 2020)]; Available online: .
    1. Sherman J., Le C., Lamers V., Eckelman M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 2012;114:1086–1090. doi: 10.1213/ANE.0b013e31824f6940.
    1. Nunn G. Low-flow anaesthesia. Contin. Educ. Anaesth. Crit. Care Pain. 2008;8:1–4. doi: 10.1093/bjaceaccp/mkm052.
    1. Brattwall M., Warrén-Stomberg M., Hesselvik F., Jakobsson J. Brief review: Theory and practice of minimal fresh gas flow anesthesia. Can. J. Anesth. 2012;59:785–797.
    1. Golembiewski J. Economic Considerations in the Use of Inhaled Anesthetic. Am. J. Health Syst. Pharm. 2010;67:S9–S12. doi: 10.2146/ajhp100093.
    1. Traynor K. Inhaled anesthetics present cost-saving opportunity. Am. J. Health Pharm. 2009;66:606–607. doi: 10.2146/news090029.
    1. Tabing A.K., Ehrenfeld J.M., Wanderer J.P. Limiter l’accès aux médicaments très dispendieux réduit le coût global des médicaments anesthésiques: Une analyse rétrospective avant et après. Can. J. Anesth. 2015;62:1045–1054. doi: 10.1007/s12630-015-0442-8.
    1. Zuegge K.L., Bunsen S.K., Volz L.M., Stromich A.K., Ward R.C., King A.R., Sobeck S.A., Wood R.E., Schliewe B.E., Steiner R.P., et al. Provider Education and Vaporizer Labeling Lead to Reduced Anesthetic Agent Purchasing with Cost Savings and Reduced Greenhouse Gas Emissions. Anesth. Analg. 2019;128:E97–E99. doi: 10.1213/ANE.0000000000003771.
    1. Inhaled Anesthetic 2020 Challenge|American Society of Anesthesiologists (ASA) [(accessed on 23 January 2020)]; Available online: .
    1. Ang T.N., Young B.R., Taylor M., Burrell R., Aroua M.K., Baroutian S. Breakthrough analysis of continuous fixed-bed adsorption of sevoflurane using activated carbons. Chemosphere. 2020;239:124839. doi: 10.1016/j.chemosphere.2019.124839.
    1. Charlesworth M., Swinton F. Anaesthetic gases, climate change, and sustainable practice. Lancet Planet. Health. 2017;1:e216–e217.
    1. Rauchenwald V., Rollins M.D., Ryan S.M., Voronov A., Feiner J.R., Šarka K., Johnson M.S. New Method of Destroying Waste Anesthetic Gases Using Gas-Phase Photochemistry. Anesth. Analg. 2019;1 doi: 10.1213/ane.0000000000004119.
    1. Ek M., Tjus K. Greenhouse Gases-Capturing, Utilization and Reduction. InTech; Rijeka, Croatia: 2012. Destruction of Medical N2O in Sweden.
    1. Table of Gaseous Composition of Dry Air. [(accessed on 10 February 2020)]; Available online: .
    1. Jordan B.D., Wright E.L. Xenon as an anesthetic agent. AANA J. 2010;78:387–392.
    1. Waste Anesthetic Gases-Occupational Hazards in Hospital. [(accessed on 6 February 2020)];2007 Available online: .
    1. OSH in the Netherlands-Arbo in Europa. [(accessed on 4 April 2020)]; Available online: .
    1. Criteria for a Recommended Standard. Occupational Exposure to Waste Anesthetic Gases and Vapors. [(accessed on 3 March 2020)];1977 Available online:
    1. Irwin M.G., Trinh T., Yao C.-L. Occupational exposure to anaesthetic gases: A role for TIVA. Expert Opin. Drug Saf. 2009;8:473–483. doi: 10.1517/14740330903003778.
    1. Boiano J.M., Steege A.L. Precautionary practices for administering anesthetic gases: A survey of physician anesthesiologists, nurse anesthetists and anesthesiologist assistants. J. Occup. Environ. Hyg. 2016;13:782–793. doi: 10.1080/15459624.2016.1177650.
    1. Braz L.G., Braz J.R.C., Cavalcante G.A.S., Souza K.M., Lucio L.M.C., Braz M.G. Comparison of waste anesthetic gases in operating rooms with or without an scavenging system in a Brazilian University Hospital. Rev. Bras. Anestesiol. 2017;67:516–520.
    1. McGregor D., Baden J., Banniste C., Domino K., Ehrenwerth J., Eisenkraft J., Mazze R., Spence A. Waste Anesthetic Gases-Information for Management in Anesthezising Areas and the Posanesthesia Care Unit (PACU) [(accessed on 10 March 2020)]; Available online: .
    1. Lucio L.M.C., Braz M.G., do Nascimento P., Jr., Braz J.R.C., Braz L.G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. 2018;68:33–41. doi: 10.1016/j.bjane.2017.07.002.
    1. Herzog-Niescery J., Botteck N.M., Vogelsang H., Gude P., Bartz H., Weber T.P., Seipp H.M. Occupational chronic sevoflurane exposure in the everyday reality of the anesthesia workplace. Anesth. Analg. 2015;121:1519–1528. doi: 10.1213/ANE.0000000000001015.
    1. Raj N., Henderson K.A., Hall J.E., Aguilera I.M., Harmer M., Hutchings A., Williams B. Evaluation of personal, environmental and biological exposure of paediatric anaesthetists to nitrous oxide and sevoflurane. Anaesthesia. 2003;58:630–636. doi: 10.1046/j.1365-2044.2003.03235.x.
    1. Brands M., Van de Velde M., Ory J.P., Wyckmans W., Berghmans J., Dubois J., Jamaer L., Stessel B. Waste Gas Scavenging during Inhalational Pediatric Anesthesia in Belgium: Results of a Nationwide Questionnaire Survey. Acta Anaesth. Belg. 2018;69:211–216.
    1. Marsh D.F., MacKie P. National survey of pediatric breathing systems use in the UK. Paediatr. Anaesth. 2009;19:477–480. doi: 10.1111/j.1460-9592.2009.02973.x.
    1. Byhahn C., Heller K., Lischke V., Westphal K. Surgeon’s occupational exposure to nitrous oxide and sevoflurane during pediatric surgery. World J. Surg. 2001;25:1109–1112. doi: 10.1007/BF03215855.
    1. Mierdl S., Byhahn C., Abdel-Rahman U., Matheis G., Westphal K. Occupational exposure to inhalational anesthetics during cardiac surgery on cardiopulmonary bypass. Ann. Thorac. Surg. 2003;75:1924–1927. doi: 10.1016/S0003-4975(03)00003-1.
    1. Blokker-Veldhuis M.J., Rutten P.M.M.J., De Hert S.G. Occupational exposure to sevoflurane during cardiopulmonary bypass. Perfusion. 2011;26:383–389. doi: 10.1177/0267659111409971.
    1. Williams G.W., Gumbert S.D., Pivalizza E.G., Syed T.A., Burnett T., Mancillas O.L., Vargas L.A., Ahn S.H., Cai C., Hagberg C.A. Evaluation and control of waste anesthetic gas in the postanesthesia care unit within patient and caregiver breathing zones. Baylor Univ. Med. Cent. Proc. 2019;32:43–49. doi: 10.1080/08998280.2018.1502017.
    1. Heiderich S., Thoben C., Dennhardt N., Koppert W., Krauß T., Sümpelmann R., Zimmermann S., Klingler W. Low anaesthetic waste gas concentrations in postanaesthesia care unit. Eur. J. Anaesthesiol. 2018:1. doi: 10.1097/EJA.0000000000000785.
    1. Kim S., Özelsel T., Tsui B.C.H. Monitoring waste anesthetic gas in the pediatric postanesthesia care unit. Can. J. Anesth. 2016;63:1301–1302.
    1. Jerath A., Parotto M., Wasowicz M., Ferguson N.D. Volatile anesthetics is a new player emerging in critical care sedation? Am. J. Respir. Crit. Care Med. 2016;193:1202–1212.
    1. Kim H.Y., Lee J.E., Kim H.Y., Kim J. Volatile sedation in the intensive care unit: A systematic review and meta-analysis. Medicine. 2017;96:e8976. doi: 10.1097/MD.0000000000008976.
    1. Herzog-Niescery J., Seipp H.M., Weber T.P., Bellgardt M. Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: A review. J. Clin. Monit. Comput. 2018;32:667–675.
    1. Herzog-Niescery J., Vogelsang H., Gude P., Seipp H.M., Uhl W., Weber T.P., Bellgardt M. Environmental safety: Air pollution while using MIRUSTM for short-term sedation in the ICU. Acta Anaesthesiol. Scand. 2019;63:86–92. doi: 10.1111/aas.13222.
    1. Vaĭsman A.I. Working conditions in the operating room and their effect on the health of anesthetists. Eksp. Khir. Anesteziol. 1967;12:44–49.
    1. Occupational disease among operating room personnel: A national study. Report of an Ad Hoc Committee on the Effect of Trace Anesthetics on the Health of Operating Room Personnel, American Society of Anesthesiologists. Anesthesiology. 1974;41:321–340.
    1. Fujinaga M., Baden J.M., Yhap E.O., Mazze R.I. Reproductive and teratogenic effects of nitrous oxide, isoflurane, and their combination in Spraque-Dawley rats. Anesthesiology. 1987;67:960–964. doi: 10.1097/00000542-198712000-00014.
    1. Tannenbaum T.N., Goldberg R.J. Exposure to anesthetic gases and reproductive outcome: A review of the epidemiologic literature. J. Occup. Med. 1985;27:659–668.
    1. Quansah R., Jaakkola J.J. Occupational exposures and adverse pregnancy outcomes among nurses: A systematic review and meta-analysis. J. Women’s Health. 2010;19:1851–1862.
    1. Oliveira C.R.D. Occupational exposure to anesthetic gases residue. Rev. Bras. Anestesiol. 2009;59:110–124.
    1. Boivin J.F. Risk of spontaneous abortion in women occupationally exposed to anaesthetic gases: A meta-analysis. Occup. Environ. Med. 1997;54:541–548.
    1. Nilsson R., Björdal C., Andersson M., Björdal J., Nyberg A., Welin B., Willman A. Health risks and occupational exposure to volatile anaesthetics-A review with a systematic approach. J. Clin. Nurs. 2005;14:173–186.
    1. Ladeira C., Viegas S. Human Biomonitoring–An overview on biomarkers and their application in Occupational and Environmental Health. Biomonitoring. 2016;3 doi: 10.1515/bimo-2016-0003.
    1. Louro H., Heinälä M., Bessems J., Buekers J., Vermeire T., Woutersen M., van Engelen J., Borges T., Rousselle C., Ougier E., et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health. 2019;222:727–737.
    1. Musak L., Smerhovsky Z., Halasova E., Osina O., Letkova L., Vodickova L., Polakova V., Buchancova J., Hemminki K., Vodicka P. Chromosomal damage among medical staff occupationally exposed to volatile anesthetics, antineoplastic drugs, and formaldehyde. Scand. J. Work. Environ. Health. 2013;39:618–630. doi: 10.5271/sjweh.3358.
    1. Szyfter K., Stachecki I., Kostrzewska-Poczekaj M., Szaumkessel M., Szyfter-Harris J., Sobczyński P. Exposure to volatile anaesthetics is not followed by a massive induction of single-strand DNA breaks in operation theatre personnel. J. Appl. Genet. 2016;57:343–348. doi: 10.1007/s13353-015-0329-y.
    1. Hoerauf K.H., Wiesner G., Schroegendorfer K.F., Jobst B.P., Spacek A., Harth M., Sator-Katzenschlager S., Rü H.W., Diger R. Waste Anaesthetic Gases induce Sister Chromatid Exchanges in Lymphocytes of Operating Room Personnel. Br. J. Anaesth. 1999;82:764–766. doi: 10.1093/bja/82.5.764.
    1. Yılmaz S., Çalbayram N.Ç. Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: A systematic review of the human biomonitoring studies. J. Clin. Anesth. 2016 doi: 10.1016/j.jclinane.2016.08.029.
    1. Vodicka P., Musak L., Fiorito G., Vymetalkova V., Vodickova L., Naccarati A. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review. Mutat. Res. Rev. Mutat. Res. 2016;770:26–34.
    1. Wiesner G., Hoerauf K., Schroegendorfer K., Sobczynski P., Harth M., Ruediger H.W. High-Level, but Not Low-Level, Occupational Exposure to Inhaled Anesthetics Is Associated with Genotoxicity in the Micronucleus Assay. Anesth. Analg. 2001:118–122. doi: 10.1097/00000539-200101000-00023.
    1. Molina Aragonés J.M., Ayora A.A., Ribalta A.B., Aparici A.G., Lavela J.A.M., Vidiella J.S., López M.H. Occupational exposure to volatile anaesthetics: A systematic review. Occup. Med. 2016;66:202–207.
    1. Çakmak G., Eraydın D., Berkkan A., Yağar S., Burgaz S. Genetic damage of operating and recovery room personnel occupationally exposed to waste anaesthetic gases. Hum. Exp. Toxicol. 2019;38:3–10. doi: 10.1177/0960327118783532.
    1. Souza K.M., Braz L.G., Nogueira F.R., Souza M.B., Bincoleto L.F., Aun A.G., Corrente J.E., Carvalho L.R., Braz J.R.C., Braz M.G. Occupational exposure to anesthetics leads to genomic instability, cytotoxicity and proliferative changes. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2016;791–792:42–48. doi: 10.1016/j.mrfmmm.2016.09.002.
    1. Schifilliti D., Mondello S., D’Arrigo M.G., Chill G., Fodale V. Genotoxic effects of anesthetic agents: An update. Expert Opin. Drug Saf. 2011;10:891–899.
    1. Wrońska-Nofer T., Nofer J.R., Jajte J., Dziubałtowska E., Szymczak W., Krajewski W., Waogoneksowicz W., Rydzyński K. Oxidative DNA damage and oxidative stress in subjects occupationally exposed to nitrous oxide (N2O) Mutat. Res. Fundam. Mol. Mech. Mutagen. 2012;731:58–63. doi: 10.1016/j.mrfmmm.2011.10.010.
    1. Chaoul M.M., Braz J.R.C., Lucio L.M.C., Golim M.A., Braz L.G., Braz M.G. Does occupational exposure to anesthetic gases lead to increase of pro-inflammatory cytokines? Inflamm. Res. 2015;64:939–942. doi: 10.1007/s00011-015-0881-2.
    1. EU Legislation to Control F-Gases|Climate Action. [(accessed on 5 February 2020)]; Available online: .
    1. Tallent R., Corcoran J., Sebastian J. Evaluation of a novel waste anaesthetic gas scavenger device for use during recovery from anaesthesia. Anaesthesia. 2018;73:59–64. doi: 10.1111/anae.14100.
    1. Kim D.D., Kimura A., Pontes D.K.L., Oliveira M.L.S., Cumino D.O. Evaluation of anesthesiologists’ knowledge about occupational health: Pilot study 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Anesthesiol. 2018;18 doi: 10.1186/s12871-018-0661-y.
    1. Occupational Exposure to Anaesthetic Gases: Risk Perception…: European Journal of Anaesthesiology (EJA) [(accessed on 3 December 2019)]; Available online: .
    1. Pierre S., Whelan R. Nausea and vomiting after surgery. Contin. Educ. Anaesth. Crit. Care Pain. 2013;13:28–32. doi: 10.1093/BJACEACCP/MKS046.
    1. Gan T.J., Belani K.G., Bergese S., Chung F., Diemunsch P., Habib A.S., Jin Z., Kovac A.L., Meyer T.A., Urman R.D., et al. Fourth Consensus Guidelines for the Management of Postoperative Nausea and Vomiting. Anesth. Analg. 2020;131:411–448. doi: 10.1213/ANE.0000000000004833.
    1. Malignant Hyperthermia-Genetics Home Reference. [(accessed on 27 April 2020)]; Available online: .
    1. Rosenberg H., Pollock N., Schiemann A., Bulger T., Stowell K. Malignant hyperthermia: A review. Orphanet J. Rare Dis. 2015;10:1–19. doi: 10.1186/s13023-015-0310-1.
    1. McKenzie A.J., Couchman K.G., Pollock N. Propofol is a “safe” anaesthetic agent in malignant hyperthermia susceptible patients. Anaesth. Intensive Care. 1992;20:165–168. doi: 10.1177/0310057X9202000208.
    1. Julliac B., Guehl D., Chopin F., Arne P., Burbaud P., Sztark F., Cros A.M. Risk factors for the occurrence of electroencephalogram abnormalities during induction of anesthesia with sevoflurane in nonepileptic patients. Anesthesiology. 2007;106:243–251. doi: 10.1097/00000542-200702000-00011.
    1. Kreuzer I., Osthaus W.A., Schultz A., Schultz B. Influence of the sevoflurane concentration on the occurrence of epileptiform EEG patterns. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0089191.
    1. Evered L., Silbert B., Knopman D.S., Scott D.A., DeKosky S.T., Rasmussen L.S., Oh E.S., Crosby G., Berger M., Eckenhoff R.G., et al. Recommendations for the nomenclature of Cognitive change associated with anaesthesia and surgery-2018. Anesthesiology. 2018;129:872–879. doi: 10.1097/ALN.0000000000002334.
    1. Khalil S., Roussel J., Schubert A., Emory L. Postoperative Cognitive Dysfunction: An Updated Review. J. Neurol Neurophysiol. 2015;6:1000290. doi: 10.4172/2155-9562.1000290.
    1. Micha G., Tzimas P., Zalonis J., Kotsis K., Papadopoulos G., Arnaoutoglou E. Propofol vs. Sevoflurane anaesthesia on postoperative cognitive dysfunction in the elderly. A randomized controlled trial. Acta Anaesthesiol. Belg. 2016;67:129–137.
    1. Cai Y., Hu H., Liu P., Feng G., Dong W., Yu B., Zhu Y., Song J., Zhao M. Association between the apolipoprotein E4 and postoperative cognitive dysfunction in elderly patients undergoing intravenous anesthesia and inhalation anesthesia. Anesthesiology. 2012;116:84–93. doi: 10.1097/ALN.0b013e31823da7a2.
    1. Zhang Y.X., Shan G.J., Zhang Y.X., Cao S.J., Zhu S.N., Li H.J., Ma D., Wang D.X. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br. J. Anaesth. 2018;121:595–604. doi: 10.1016/j.bja.2018.05.059.
    1. Miller D., Lewis S.R., Pritchard M.W., Schofield-Robinson O.J., Shelton C.L., Alderson P., Smith A.F. Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 2018;8:CD012317. doi: 10.1002/14651858.CD012317.pub2.
    1. Stollings L.M., Jia L.J., Tang P., Dou H., Lu B., Xu Y. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125:399–411.
    1. Slankamenac K., Breitenstein S., Beck-Schimmer B., Graf R., Puhan M.A., Clavien P.A. Does pharmacological conditioning with the volatile anaesthetic sevoflurane offer protection in liver surgery? HPB. 2012;14:854–862. doi: 10.1111/j.1477-2574.2012.00570.x.
    1. Beck-Schimmer B., Bonvini J.M., Braun J., Seeberger M., Neff T.A., Risch T.J., Stüber F., Vogt A., Weder W., Schneiter D., et al. Which Anesthesia Regimen Is Best to Reduce Morbidity and Mortality in Lung Surgery?: A Multicenter Randomized Controlled Trial. Anesthesiology. 2016;125:313–321. doi: 10.1097/ALN.0000000000001164.
    1. Bland J.H.L., Lowenstein E. Halothane induced decrease in experimental myocardial ischemia in the nonfailing canine heart. Anesthesiology. 1976;45:287–293. doi: 10.1097/00000542-197609000-00006.
    1. Loveridge R., Schroeder F. Anaesthetic preconditioning. Contin. Educ. Anaesth. Crit. Care Pain. 2010;10:38–42. doi: 10.1093/BJACEACCP/MKQ005.
    1. Pagel P.S. Anesthetic “conditioning:” A Continuing Question of Clinical Relevance. J. Cardiothorac. Vasc. Anesth. 2015;29:e75–e76.
    1. Pagel P.S., Crystal G.J. The Discovery of Myocardial Preconditioning Using Volatile Anesthetics: A History and Contemporary Clinical Perspective. J. Cardiothorac. Vasc. Anesth. 2018;32:1112–1134. doi: 10.1053/j.jvca.2017.12.029.
    1. Van Allen N.R., Krafft P.R., Leitzke A.S., Applegate R.L., Tang J., Zhang J.H. The role of Volatile Anesthetics in Cardioprotection: A systematic review. Med. Gas Res. 2012;2:22. doi: 10.1186/2045-9912-2-22.
    1. De Hert S.G., Preckel B., Schlack W.S. Update on inhalational anaesthetics. Curr. Opin. Anaesthesiol. 2009;22:491–495.
    1. Bignami E., Guarnieri M., Pieri M., De Simone F., Rodriguez A., Cassarà L., Lembo R., Landoni G., Zangrillo A. Volatile anaesthetics added to cardiopulmonary bypass are associated with reduced cardiac troponin. Perfus. 2017;32:547–553. doi: 10.1177/0267659117701562.
    1. Zhao X., Wu X., Xu G. Sevoflurane Versus Total Intravenous Anesthesia for Cardiac Surgery. Int. J. Clin. Exp. Med. 2017;10:13739–13745.
    1. De Hert S., Vlasselaers D., Barbé R., Ory J.-P., Dekegel D., Donnadonni R., Demeere J.-L., Mulier J., Wouters P. A comparison of volatile and non volatile agents for cardioprotection during on-pump coronary surgery. Anaesthesia. 2009;64:953–960. doi: 10.1111/j.1365-2044.2009.06008.x.
    1. Buse G.A.L.L., Schumacher P., Seeberger E., Studer W., Schuman R.M., Fassl J., Kasper J., Filipovic M., Bolliger D., Seeberger M.D. Randomized comparison of sevoflurane versus propofol to reduce perioperative myocardial ischemia in patients undergoing noncardiac surgery. Circulation. 2012;126:2696–2704. doi: 10.1161/CIRCULATIONAHA.112.126144.
    1. Bignami E., Biondi-Zoccai G., Landoni G., Fochi O., Testa V., Sheiban I., Giunta F., Zangrillo A. Volatile Anesthetics Reduce Mortality in Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2009;23:594–599. doi: 10.1053/j.jvca.2009.01.022.
    1. Uhlig C., Bluth T., Schwarz K., Deckert S., Heinrich L., De Hert S., Landoni G., Neto A.S., Schultz M.J., Pelosi P., et al. Effects of volatile anesthetics on mortality and postoperative pulmonary and other complications in patients undergoing surgery: A systematic review and meta-analysis. Anesthesiology. 2016;124:1230–1245. doi: 10.1097/ALN.0000000000001120.
    1. Jiao X.F., Lin X.M., Ni X.F., Li H.L., Zhang C., Yang C.S., Song H.X., Yi Q.S., Zhang L.L. Volatile anesthetics versus total intravenous anesthesia in patients undergoing coronary artery bypass grafting: An updated metaanalysis and trial sequential analysis of randomized controlled trials. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0224562.
    1. Zhang Y., Yang L., Zhang W., Liu J. Effect of volatile anesthetics on mortality and clinical outcomes in patients undergoing coronary artery bypass grafting: A meta-analysis of randomized clinical trials. Minerva Anestesiol. 2020 doi: 10.23736/S0375-9393.20.14304-9.
    1. Landoni G., Lomivorotov V.V., Nigro Neto C., Monaco F., Pasyuga V.V., Bradic N., Lembo R., Gazivoda G., Likhvantsev V.V., Lei C., et al. Volatile Anesthetics versus Total Intravenous Anesthesia for Cardiac Surgery. N. Engl. J. Med. 2019;380:1214–1225. doi: 10.1056/NEJMoa1816476.
    1. De Hert S. EDITORIAL Cardioprotection by Volatile Anesthetics: What About Noncardiac Surgery? YJCAN. 2011;25:899–901. doi: 10.1053/j.jvca.2011.08.004.
    1. Devereaux P.J., Goldman L., Cook D.J., Gilbert K., Leslie K., Guyatt G.H. Perioperative cardiac events in patients undergoing noncardiac surgery: A review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ. 2005;173:627–634.
    1. Landoni G., Fochi O., Bignami E., Calabrò M.G., D’Arpa M.C., Moizo E., Mizzi A., Pappalardo F., Morelli A., Zangrillo A. Cardiac protection by volatile anesthetics in non-cardiac surgery? A meta-analysis of randomized controlled studies on clinically relevant endpoints. HSR Proc. Intensive Care Cardiovasc. Anesth. 2009;1:34–43.
    1. De Hert S.G., Longrois D., Yang H., Fleisher L.A. Does the use of a volatile anesthetic regimen attenuate the incidence of cardiac events after vascular surgery? Acta Anaesthesiol. Belg. 2008;59:19–25.
    1. Zangrillo A., Testa V., Aldrovandi V., Tuoro A., Casiraghi G., Cavenago F., Messina M., Bignami E., Landoni G. Volatile agents for cardiac protection in noncardiac surgery: A randomized controlled study. J. Cardiothorac. Vasc. Anesth. 2011;25:902–907. doi: 10.1053/j.jvca.2011.06.016.
    1. Bassuoni A.S., Amr Y.M. Cardioprotective effect of sevoflurane in patients with coronary artery disease undergoing vascular surgery. Saudi J. Anaesth. 2012;6:125–130. doi: 10.4103/1658-354X.97024.
    1. Landoni G., Cabrini L. Non-cardiac surgery and volatile agents—Back to the future. Saudi J. Anaesth. 2012;6:107–108.
    1. Yoon H.-K., Jun K., Park S.-K., Ji S.-H., Jang Y.-E., Yoo S., Kim J.-T., Kim W.H. Anesthetic Agents and Cardiovascular Outcomes of Noncardiac Surgery after Coronary Stent Insertion. J. Clin. Med. 2020;9:429. doi: 10.3390/jcm9020429.
    1. Kwon J.-H., Park J., Lee S.H., Oh A.R., Lee J.-H., Min J.J. Effects of Volatile versus Total Intravenous Anesthesia on Occurrence of Myocardial Injury after Non-Cardiac Surgery. J. Clin. Med. 2019;8:1999. doi: 10.3390/jcm8111999.
    1. Leslie K., Myles P.S., Chan M.T.V., Forbes A., Paech M.J., Peyton P., Silbert B.S., Williamson E. Nitrous oxide and long-term morbidity and mortality in the ENIGMA trial. Anesth. Analg. 2011;112:387–393. doi: 10.1213/ANE.0b013e3181f7e2c4.
    1. Beattie W.S., Badner N.H. The Enigma of ENIGMA-I. Anesth. Analg. 2011;112:255–257.
    1. Myles P.S., Leslie K., Chan M.T.V., Forbes A., Peyton P.J., Paech M.J., Beattie W.S., Sessler D.I., Devereaux P.J., Silbert B., et al. The safety of addition of nitrous oxide to general anaesthesia in at-risk patients having major non-cardiac surgery (ENIGMA-II): A randomised, single-blind trial. Lancet. 2014;384:1446–1454. doi: 10.1016/S0140-6736(14)60893-X.
    1. Jain D., Ma H.K., Buckley N. Impact of ENIGMA trials on nitrous oxide: A survey of Canadian anesthesiologists and residents. Can. J. Anesth. 2018;65:730–731.
    1. Minguet G., Joris J., Lamy M. Preconditioning and protection against ischaemia-reperfusion in non-cardiac organs: A place for volatile anaesthetics? Eur. J. Anaesthesiol. 2007;24:733–745.
    1. Nieuwenhuijs-Moeke G.J., Nieuwenhuijs V.B., Seelen M.A.J., Berger S.P., van den Heuvel M.C., Burgerhof J.G.M., Ottens P.J., Ploeg R.J., Leuvenink H.G.D., Struys M.M.R.F. Propofol-based anaesthesia versus sevoflurane-based anaesthesia for living donor kidney transplantation: Results of the VAPOR-1 randomized controlled trial. BJA Br. J. Anaesth. 2017;118:720–732. doi: 10.1093/bja/aex057.
    1. Aditianingsih D., Sukmono B., Agung T.A., Kartolo W.Y., Adiwongso E.S., Mochtar C.A. Comparison of the Effects of Target-Controlled Infusion of Propofol and Sevoflurane as Maintenance of Anesthesia on Hemodynamic Profile in Kidney Transplantation. Anesthesiol. Res. Pract. 2019 doi: 10.1155/2019/5629371.
    1. Grabitz S.D., Farhan H.N., Ruscic K.J., Timm F.P., Shin C.H., Thevathasan T., Staehr-Rye A.K., Kurth T., Eikermann M. Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications: A Prospective Analysis of Data on File from Three Hospitals in New England. Crit. Care Med. 2017;45:e30–e39. doi: 10.1097/CCM.0000000000002015.
    1. De Conno E., Steurer M.P., Wittlinger M., Zalunardo M.P., Weder W., Schneiter D., Schimmer R.C., Klaghofer R., Neff T.A., Schmid E.R., et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–1326. doi: 10.1097/ALN.0b013e3181a10731.
    1. Landoni G., Saleh O., Scarparo E., Zangrillo A. Volatile anesthetics for lung protection: A bridge between operating rooms and intensive care units? Ann. Transl. Med. 2016;4:36. doi: 10.21037/13059.
    1. Tohme S., Simmons R.L., Tsung A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017;77:1548–1552.
    1. Hiller J.G., Perry N.J., Poulogiannis G., Riedel B., Sloan E.K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 2018;15:205–218.
    1. Shapiro J., Jersky J., Katzav S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J. Clin. Investig. 1981;68:678–685. doi: 10.1172/JCI110303.
    1. Cukurova Z., Cetingok H., Ozturk S., Gedikbasi A., Hergunsel O., Ozturk D., Don B., Cefle K., Palanduz S., Ertem D.H. DNA damage effects of inhalation anesthetics in human bronchoalveolar cells. Medicine. 2019;98:e16518. doi: 10.1097/MD.0000000000016518.
    1. Zhang W., Sheng B., Chen S., Zhao H., Wu L., Sun Y., Cui J., Zhu X., Ma D. Sevoflurane Enhances Proliferation, Metastatic Potential of Cervical Cancer Cells via the Histone Deacetylase 6 Modulation In Vitro. Anesthesiology. 2020:1. doi: 10.1097/ALN.0000000000003129.
    1. Li R., Huang Y., Lin J. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-019-14065-6.
    1. Hooijmans C.R., Geessink F.J., Ritskes-Hoitinga M., Scheffer G.J. A systematic review of the modifying effect of anaesthetic drugs on metastasis in animal models for cancer. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0156152.
    1. Yang W., Cai J., Zabkiewicz C., Zhang H., Ruge F., Jiang W.G. The Effects of Anesthetics on Recurrence and Metastasis of Cancer, and Clinical Implications. World J. Oncol. 2017;8:63–70. doi: 10.14740/wjon1031e.
    1. Wigmore T.J., Mohammed K., Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: A retrospective analysis. Anesthesiology. 2016;124:69–79. doi: 10.1097/ALN.0000000000000936.
    1. Zheng X., Wang Y., Dong L., Zhao S., Wang L., Chen H., Xu Y., Wang G. Effects of propofol-based total intravenous anesthesia on gastric cancer: A retrospective study. Onco. Targets. Ther. 2018;11:1141–1148. doi: 10.2147/OTT.S156792.
    1. Jun I.J., Jo J.Y., Kim J.I., Chin J.H., Kim W.J., Kim H.R., Lee E.H., Choi I.C. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-14147-9.
    1. Wu Z.F., Lee M.S., Wong C.S., Lu C.H., Huang Y.S., Lin K.T., Lou Y.S., Lin C., Chang Y.C., Lai H.C. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology. 2018;129:932–941.
    1. Yoo S., Lee H.B., Han W., Noh D.Y., Park S.K., Kim W.H., Kim J.T. Total intravenous anesthesia versus inhalation anesthesia for breast cancer surgery: A retrospective cohort study. Anesthesiology. 2019;130:31–40. doi: 10.1097/ALN.0000000000002491.
    1. Kim M.H., Kim D.W., Kim J.H., Lee K.Y., Park S., Yoo Y.C. Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget. 2017;8:90477–90487. doi: 10.18632/oncotarget.21014.
    1. Oh T.K., Kim K., Jheon S., Lee J., Do S.H., Hwang J.W., Song I.A. Long-Term Oncologic Outcomes for Patients Undergoing Volatile Versus Intravenous Anesthesia for Non-Small Cell Lung Cancer Surgery: A Retrospective Propensity Matching Analysis. Cancer Control. 2018;25 doi: 10.1177/1073274818775360.
    1. Nadler J.W., Quinn T.D., Bennett-Guerrero E. Can anesthesiologists affect cancer outcomes? Can. J. Anesth. 2019;66:491–494.
    1. Sessler D.I., Riedel B. Anesthesia and cancer recurrence: Context for divergent study outcomes. Anesthesiology. 2019;130:3–5.
    1. Perry N.J.S., Buggy D., Ma D. Can Anesthesia Influence Cancer Outcomes after Surgery? JAMA Surg. 2019;154 doi: 10.1001/jamasurg.2018.4619.
    1. LERMAN J., JÖHR M. Inhalational anesthesia vs. total intravenous anesthesia (TIVA) for pediatric anesthesia. Pediatr. Anesth. 2009;19:521–534. doi: 10.1111/j.1460-9592.2009.02962.x.
    1. Bettex D.A., Wanner P.M., Bosshart M., Balmer C., Knirsch W., Dave H., Dillier C., Bürki C., Hug M., Seifert B., et al. Role of sevoflurane in organ protection during cardiac surgery in children: A randomized controlled trial. Interact. Cardiovasc. Thorac. Surg. 2015;20:157–165. doi: 10.1093/ICVTS/IVU381.
    1. Omara A.F., Abdelrahman A.F., Elshiekh M.L. Recovery with propofol anesthesia in children undergoing cleft palate repair compared with sevoflurane anesthesia. Anesthesiol. Pain Med. 2019;9:e92076. doi: 10.5812/aapm.92076.
    1. Costi D., Cyna A.M., Ahmed S., Stephens K., Strickland P., Ellwood J., Larsson J.N., Chooi C., Burgoyne L.L., Middleton P. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst. Rev. 2014;2014:CD007084. doi: 10.1002/14651858.CD007084.pub2.
    1. Lauder G.R. Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice. Paediatr. Anaesth. 2015;25:52–64.
    1. Scheiermann P., Herzog F., Siebenhofer A., Strametz R., Weberschock T. Intravenous versus inhalational anesthesia for pediatric inpatient surgery–A systematic review and meta-analysis. J. Clin. Anesth. 2018;49:19–25.
    1. Tramèr M., Moore A., Mcquay H., Tramèr M., Moore A., Mcquay H. Propofol Anaesthesia and Postoperative Nausea and Vomiting: Quantitative Systematic Review of Randomized Controlled Studies. Br. J. Anaesth. 1997;78:247–255. doi: 10.1093/bja/78.3.247.
    1. Chidambaran V., Costandi A., D’Mello A. Propofol: A Review of its Role in Pediatric Anesthesia and Sedation. CNS Drugs. 2015;29:543–563.
    1. Sury M.R.J., Palmer J.H.M.G., Cook T.M., Pandit J.J. The State of UK anaesthesia: A survey of National Health Service activity in 2013. Br. J. Anaesth. 2014 doi: 10.1093/bja/aeu292.
    1. Lim A., Braat S., Hiller J., Riedel B. Inhalational versus Propofol-Based Total Intravenous Anaesthesia: Practice Patterns and Perspectives among Australasian Anaesthetists. Anaesth. Intensive Care. 2018;46:480–487. doi: 10.1177/0310057X1804600509.
    1. Wong G.T.C., Choi S.W., Tran D.H., Kulkarni H., Irwin M. An International Survey Evaluating Factors Influencing the Use of Total Intravenous Anaesthesia. Anaesth. Intensive Care. 2018;46:332–338. doi: 10.1177/0310057X1804600312.
    1. White S.M., Shelton C.L. Abandoning inhalational anaesthesia. Anaesthesia. 2020;75:451–454. doi: 10.1111/anae.14853.
    1. Nimmo A.F., Absalom A.R., Bagshaw O., Biswas A., Cook T.M., Costello A., Grimes S., Mulvey D., Shinde S., Whitehouse T., et al. Guidelines for the safe practice of total intravenous anaesthesia (TIVA) Anaesthesia. 2019;74:211–224. doi: 10.1111/anae.14428.

Source: PubMed

3
Sottoscrivi