Effects of Transcranial Direct Current Stimulation Paired With Cognitive Training on Functional Connectivity of the Working Memory Network in Older Adults

Nicole R Nissim, Andrew O'Shea, Aprinda Indahlastari, Jessica N Kraft, Olivia von Mering, Serkan Aksu, Eric Porges, Ronald Cohen, Adam J Woods, Nicole R Nissim, Andrew O'Shea, Aprinda Indahlastari, Jessica N Kraft, Olivia von Mering, Serkan Aksu, Eric Porges, Ronald Cohen, Adam J Woods

Abstract

Background: Working memory, a fundamental short-term cognitive process, is known to decline with advanced age even in healthy older adults. Normal age-related declines in working memory can cause loss of independence and decreased quality of life. Cognitive training has shown some potential at enhancing certain cognitive processes, although, enhancements are variable. Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has shown promise at enhancing working memory abilities, and may further the benefits from cognitive training interventions. However, the neural mechanisms underlying tDCS brain-based enhancements remain unknown.

Objective/hypothesis: Assess the effects of a 2-week intervention of active-tDCS vs. sham paired with cognitive training on functional connectivity of the working memory network during an N-Back working memory task.

Methods: Healthy older adults (N = 28; mean age = 74 ± 7.3) completed 10-sessions of cognitive training paired with active or sham-tDCS. Functional connectivity was evaluated at baseline and post-intervention during an N-Back task (2-Back vs. 0-Back).

Results: Active-tDCS vs. sham demonstrated a significant increase in connectivity between the left dorsolateral prefrontal cortex and right inferior parietal lobule at post-intervention during 2-Back. Target accuracy on 2-Back was significantly improved for active vs. sham at post-intervention.

Conclusion: These results suggest pairing tDCS with cognitive training enhances functional connectivity and working memory performance in older adults, and thus may hold promise as a method for remediating age-related cognitive decline. Future studies evaluating optimal dose and long-term effects of tDCS on brain function will help to maximize potential clinical impacts of tDCS paired with cognitive training in older adults.

Clinical trial registration: www.ClinicalTrials.gov, identifier NCT02137122.

Keywords: N-Back; cognitive aging; cognitive training; fMRI; functional connectivity; neuromodulation; transcranial direct current stimulation; working memory.

Copyright © 2019 Nissim, O’Shea, Indahlastari, Kraft, von Mering, Aksu, Porges, Cohen and Woods.

Figures

FIGURE 1
FIGURE 1
Experimental design and study timeline.
FIGURE 2
FIGURE 2
A computational model of electric field distribution for F3–F4 placement in one participant. The left hand side depicts the electric field strengths (|EF|) on the cortical surface for F3 (cathode, blue electrode) and F4 (anode, red electrode) montage. |EF| distribution was calculated using a finite element based approach in ROAST (Huang et al., 2019).
FIGURE 3
FIGURE 3
Example of a 2-Back working memory task.
FIGURE 4
FIGURE 4
Mean functional connectivity β values (±standard error) for 2-Back over rest at baseline and post-intervention from left dorsolateral prefrontal cortex (DLPFC) to right inferior parietal cortex (IPL), ∗p-FDR < 0.05 (LH = left hemisphere; RH = right hemisphere).
FIGURE 5
FIGURE 5
Seed to target ROIs with significantly increased connectivity during the 2-Back task at post-intervention (ROI colors: Red = left DLPFC; Black = right IPL).
FIGURE 6
FIGURE 6
Mean percent accuracy for 2-Back target stimuli. Error bars represent standard error of the mean (∗p < 0.05).
FIGURE 7
FIGURE 7
Reaction time on 2-Back target stimuli reported in milliseconds (ms) from baseline to post-intervention. Error bars represent standard error of the mean.

References

    1. Baddeley A. (1992). Working memory. Curr. Biol. 255 556–559. 10.1016/j.cub.2009.12.014
    1. Baddeley A. (2000). The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4 417–423. 10.1016/S1364-6613(00)01538-2
    1. Baddeley A. (2003). Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4 829–839. 10.1038/nrn1201
    1. Baddeley A. D., Hitch G. (1974). Working memory. Psychol. Learn. Motiv. 8 47–89.
    1. Ball K., Berch D. B., Helmers K. F., Jobe J. B., Leveck M. D., Marsiske M., et al. (2002). Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288 2271–2281.
    1. Batsikadze G., Moliadze V., Paulus W., Kuo M.-F., Nitsche M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591(Pt 7), 1987–2000. 10.1113/jphysiol.2012.249730
    1. Behzadi Y., Restom K., Liau J., Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37 90–101. 10.1016/J.NEUROIMAGE.2007.04.042
    1. Berry A. S., Zanto T. P., Clapp W. C., Hardy J. L., Delahunt P. B., Henry W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS One 5:e11537. 10.1371/journal.pone.0011537
    1. Cabeza R., Anderson N. D., Locantore J. K., McIntosh A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17 1394–1402. 10.1006/nimg.2002.1280
    1. Curtis C. E., D’Esposito M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7 415–423. 10.1016/S1364-6613(03)00197-9
    1. Demirakca T., Cardinale V., Dehn S., Ruf M., Ende G. (2016). The exercising brain: changes in functional connectivity induced by an integrated multimodal cognitive and whole body motor coordination training. Neural Plast. 2016:8240894.
    1. Ebaid D., Crewther S. G., MacCalman K., Brown A., Crewther D. P. (2017). Cognitive processing speed across the lifespan: beyond the influence of motor speed. Front. Aging Neurosci. 9:62. 10.3389/fnagi.2017.00062
    1. Edin F., Klingberg T., Johansson P., McNab F., Tegner J., Compte A. (2009). Mechanism for top-down control of working memory capacity. Proc. Natl. Acad. Sci. U.S.A. 106 6802–6807. 10.1073/pnas.0901894106
    1. Fallon N., Chiu Y., Nurmikko T., Stancak A. (2016). Functional connectivity with the default mode network is altered in fibromyalgia patients. PLoS One 11:e0159198. 10.1371/journal.pone.0159198
    1. Friston K. J., Ashburner J., Kiebel S., Nichols T., Penny W. D. (2007). Statistical Parametric Mapping: The Analysis of Funtional Brain Images. Cambridge, CA: Elsevier Academic Press.
    1. Gill J., Shah-basak P. P., Hamilton R. (2015). It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 8 253–259. 10.1016/j.brs.2014.10.018
    1. Huang Y., Datta A., Bikson M., Parra L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline. J. Neural. Eng. 16:056006. 10.1088/1741-2552/ab208d
    1. Jones K. T., Stephens J. A., Alam M., Bikson M., Berryhill M. E., Park Kramer A. (2015). Longitudinal neurostimulation in older adults improves working memory. PLoS One 10:e0121904. 10.1371/journal.pone.0121904
    1. Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14 317–324. 10.1016/j.tics.2010.05.002
    1. Klingberg T., Kawashima R., Roland P. E. (1995). Activation of multi-modal cortical areas underlies short-term memory. Eur. J. Neurosci. 8 1965–1971. 10.1111/j.1460-9568.1996.tb01340.x
    1. Kuo M. F., Nitsche M. A. (2015). Exploring prefrontal cortex functions in healthy humans by transcranial electrical stimulation. Neurosci. Bull. 31 198–206. 10.1007/s12264-014-1501-9
    1. Linden D. E. J. (2007). The working memory networks of the human Brain. Neuroscientist 13 257–267. 10.1177/1073858406298480
    1. Manoach D. S., Schlaug C. A. G., Siewert B., Darby D. G., Bly B. M., Benfield A., et al. (1997). Prefrontal cortex fMRI signal changes are correlated with working memory load. Neuroreport 8 545–549. 10.1097/00001756-199701200-00033
    1. Martin D. M., Liu R., Alonzo A., Green M., Loo C. K. (2014). Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp. Brain Res. 232 3345–3351. 10.1007/s00221-014-4022-x
    1. McLaren M. E., Nissim N. R., Woods A. J. (2018). The effects of medication use in transcranial direct current stimulation: a brief review. Brain Stimul. 11 52–58. 10.1016/j.brs.2017.10.006
    1. Mograbi D. C., Faria C., de A., Fichman H. C., Paradela E. M. P., Lourenço R. A. (2014). Relationship between activities of daily living and cognitive ability in a sample of older adults with heterogeneous educational level. Ann. Indian Acad. Neurol. 17 71–76. 10.4103/0972-2327.128558
    1. Monte-Silva K., Kuo M.-F., Hessenthaler S., Fresnoza S., Liebetanz D., Paulus W., et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6 424–432. 10.1016/j.brs.2012.04.011
    1. Mosayebi S. M., Agboada D., Jamil A., Kuo M. F., Nitsche M. A. (2019). Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 119 350–361. 10.1016/j.cortex.2019.04.016
    1. Nissim N. R., O’Shea A., Indahlastari A., Telles R., Richards L., Porges E., et al. (2019). Effects of in-scanner bilateral frontal tDCS on functional connectivity of the working memory network in older adults. Front. Aging Neurosci. 11:51. 10.3389/fnagi.2019.00051
    1. Nissim N. R., O’Shea A. M., Bryant V., Porges E. C., Cohen R., Woods A. J. (2017). Frontal structural neural correlates of working memory performance in older adults. Front. Aging Neurosci. 8:328 10.3389/fnagi.2016.00328
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(Pt 3), 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Owen A. M., Mcmillan K. M., Laird A. R. (2005). N-Back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 59 46–59. 10.1002/hbm.20131
    1. Park D. C., Festini S. B. (2017). Theories of memory and aging: a look at the past and a glimpse of the future. J. Gerontol. B Psychol. Sci. Soc. Sci. 72 82–90. 10.1093/geronb/gbw066
    1. Park S.-H., Seo J.-H., Kim Y.-H., Ko M.-H. (2013). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport 25 122–126. 10.1097/WNR.0000000000000080
    1. Pelletier S. J., Cicchetti F. (2015). Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int. J. Neuropsychopharmacol. 18:Pyu047. 10.1093/ijnp/pyu047
    1. Rebok G. W., Ball K., Guey L. T., Jones R. N., Kim H.-Y., King J. W., et al. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriat. Soc. 62 16–24. 10.1111/jgs.12607
    1. Richmond L. L., Wolk D., Chein J., Olson I. R. (2014). Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. J. Cogn. Neurosci. 26 2443–2454. 10.1162/jocn_a_00657
    1. Soyata A. Z., Aksu S., Woods A. J., İşçen P., Saçar K. T., Karamürsel S. (2019). Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. Eur. Arch. Psychiatry Clin. Neurosci. 269 275–284. 10.1007/s00406-018-0948-5
    1. Stephens J. A., Berryhill M. E. (2016). Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimul. 9 553–559. 10.1016/j.brs.2016.04.001
    1. Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2 125–141. 10.1089/brain.2012.0073
    1. Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Woods A. J., Cohen R., Marsiske M., Alexander G. E., Czaja S. J., Wu S. (2018). Augmenting cognitive training in older adults (The ACT Study): design and methods of a phase III tDCS and cognitive training trial. Contemp. Clin. Trials 65 19–32. 10.1016/j.cct.2017.11.017
    1. Zaehle T., Sandmann P., Thorne J. D., Jäncke L., Herrmann C. S. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 12:2. 10.1186/1471-2202-12-2

Source: PubMed

3
Sottoscrivi