Update on the psychometric properties and minimal important difference (MID) thresholds of the FACT-M questionnaire for use in treatment-naïve and previously treated patients with metastatic Merkel cell carcinoma

Murtuza Bharmal, Sandra Nolte, Mickaël Henry-Szatkowski, Meliessa Hennessy, Michael Schlichting, Murtuza Bharmal, Sandra Nolte, Mickaël Henry-Szatkowski, Meliessa Hennessy, Michael Schlichting

Abstract

Objectives: For valid and reliable assessment of patients' Health-Related Quality of Life (HRQoL), it is crucial to use psychometrically robust instruments. In the context of rare diseases such as Merkel cell carcinoma (MCC), validated disease-specific instruments are often not available. The Functional Assessment of Cancer Therapy - Melanoma (FACT-M) was originally developed for use in melanoma. Its psychometric performance for use in MCC and minimal important difference (MID) thresholds have been previously reported based on a cohort of metastatic MCC patients who had disease progression following one or more prior line of chemotherapy (NCT02155647 Part A; n = 70). Since then, new data from the phase II JAVELIN Merkel 200 trial among treatment-naïve patients are available (NCT02155647 Part B; n = 102). This study aims to increase accuracy and precision of previously established psychometric properties and MID thresholds of FACT-M in metastatic MCC patients.

Methods: Published qualitative research suggests that patients with metastatic MCC had similar experiences and described similar concepts associated with their disease independent of whether they were treatment naïve or had prior treatment. Therefore, it was deemed appropriate to pool FACT-M data from Part A (previously treated) and Part B (treatment-naïve) cohorts for this study. Construct validity was assessed by evaluating item-factor correlations (convergent validity) and known-groups validity using ECOG performance status 0 versus 1. Concurrent validity was assessed using EQ-5D items. Internal consistency reliability was assessed using Cronbach's α. Anchor- and distribution-based approaches were used to derive MID thresholds.

Results: Overall, psychometric tests based on various validity (convergent, known-groups, concurrent) and reliability (Cronbach α) analyses confirmed previous findings in that FACT-M performs well in MCC patients. MID thresholds derived from this study are largely in line with previously established thresholds with some minor adjustments.

Conclusions: In the context of rare diseases, which often have limited data available for psychometric testing, a reasonably large MCC patient sample was available for this study, enhancing accuracy and precision of previously established FACT-M psychometric properties and MID thresholds with only small deviations for use in metastatic MCC patients. Results suggest that the FACT-M is suitable for Merkel cell carcinoma regardless of patients' treatment status.

Trial registration: This study is a pre-planned post-hoc analysis conducted on data collected in Part A and Part B of the JAVELIN Merkel 200 trial. This trial was registered on 2 June 2014 with ClinicalTrials.gov as NCT02155647.

Keywords: FACT-M questionnaire; Health-related quality of life; Merkel cell carcinoma; Minimal important difference; Patient reported outcome; Psychometrics; Self report; Validity and reliability.

Conflict of interest statement

SN and MHS (ICON plc) are paid consultants/advisors for Merck KGaA.

References

    1. Kluetz PG, O’Connor DJ, Soltys K. Incorporating the patient experience into regulatory decision making in the USA, Europe, and Canada. Lancet Oncol. 2018;19:e267–e274. doi: 10.1016/S1470-2045(18)30097-4.
    1. Basch E, Dueck AC. Patient-reported outcome measurement in drug discovery: a tool to improve accuracy and completeness of efficacy and safety data. Expert Opin Drug Discov. 2016;11:753–758. doi: 10.1080/17460441.2016.1193148.
    1. Messick S: Validity of psychological assessment: validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. ETS Research Report Series 1994, 1994:i-28.
    1. Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, Lebbe C, Linette GP, Milella M, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–1385. doi: 10.1016/S1470-2045(16)30364-3.
    1. D’Angelo SP, Russell J, Lebbe C, Chmielowski B, Gambichler T, Grob JJ, Kiecker F, Rabinowits G, Terheyden P, Zwiener I, et al. Efficacy and safety of first-line Avelumab treatment in patients with stage IV metastatic Merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4:e180077. doi: 10.1001/jamaoncol.2018.0077.
    1. Bharmal M, Fofana F, Barbosa CD, Williams P, Mahnke L, Marrel A, Schlichting M. Psychometric properties of the FACT-M questionnaire in patients with Merkel cell carcinoma. Health Qual Life Outcomes. 2017;15:247. doi: 10.1186/s12955-017-0815-5.
    1. Fayers P, Machin D: Quality of life: the assessment, analysis and reporting of paitent-reported outcomes. 3rd edn. Chichester: WILEY Blackwell; 2017.
    1. Kaufman HL, Dias Barbosa C, Guillemin I, Lambert J, Mahnke L, Bharmal M. Living with Merkel cell carcinoma (MCC): development of a conceptual model of MCC based on patient experiences. Patient. 2018;11:439–449. doi: 10.1007/s40271-018-0301-0.
    1. D’Angelo SP, Lambert J, Russell J, Lebbe C, Chmielowski B, Hennessy M, Marrel A, Bharmal M: Patient experiences with avelumab in treatment-naive metastatic Merkel cell carcinoma: qualitative interview findings from a registrational clinical trial. In ASCO-SITC Clinical Immuno-Oncology Symposium; February 28 to March 2, 2019; San Francisco, CA, USA. 2019.
    1. Cormier JN, Ross MI, Gershenwald JE, Lee JE, Mansfield PF, Camacho LH, Kim K, Webster K, Cella D, Palmer JL. Prospective assessment of the reliability, validity, and sensitivity to change of the functional assessment of Cancer therapy-melanoma questionnaire. Cancer. 2008;112:2249–2257. doi: 10.1002/cncr.23424.
    1. Askew RL, Xing Y, Palmer JL, Cella D, Moye LA, Cormier JN. Evaluating minimal important differences for the FACT-melanoma quality of life questionnaire. Value Health. 2009;12:1144–1150. doi: 10.1111/j.1524-4733.2009.00570.x.
    1. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, Bonsel G, Badia X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L) Qual Life Res. 2011;20:1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Cronbach L. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16(13):297–334. doi: 10.1007/BF02310555.
    1. McDonald R. Test theory: a unified treatment. Mahwah, NJ: Lawrence Erlbaum Associates; 1999.
    1. Dunn TJ, Baguley T, Brunsden V. From alpha to omega: a practical solution to the pervasive problem of internal consistency estimation. Br J Psychol. 2014;105:399–412. doi: 10.1111/bjop.12046.
    1. Deng L, Chan W. Testing the difference between reliability coefficients alpha and omega. Educ Psychol Meas. 2017;77:185–203. doi: 10.1177/0013164416658325.
    1. US Food and Drug Administration. Guidance for industry. Patient-reported outcome measures: use in medical product development to support labeling claims. 2009. []. Accessed 13 May 2020.
    1. Yost KJ, Cella D, Chawla A, Holmgren E, Eton DT, Ayanian JZ, West DW. Minimally important differences were estimated for the functional assessment of Cancer therapy-colorectal (FACT-C) instrument using a combination of distribution- and anchor-based approaches. J Clin Epidemiol. 2005;58:1241–1251. doi: 10.1016/j.jclinepi.2005.07.008.
    1. Yost KJ, Eton DT. Combining distribution- and anchor-based approaches to determine minimally important differences: the FACIT experience. Eval Health Prof. 2005;28:172–191. doi: 10.1177/0163278705275340.
    1. Ousmen A, Touraine C, Deliu N, Cottone F, Bonnetain F, Efficace F, Bredart A, Mollevi C, Anota A. Distribution- and anchor-based methods to determine the minimally important difference on patient-reported outcome questionnaires in oncology: a structured review. Health Qual Life Outcomes. 2018;16:228. doi: 10.1186/s12955-018-1055-z.
    1. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61:102–109. doi: 10.1016/j.jclinepi.2007.03.012.
    1. Coon CD, Cook KF. Moving from significance to real-world meaning: methods for interpreting change in clinical outcome assessment scores. Qual Life Res. 2018;27:33–40. doi: 10.1007/s11136-017-1616-3.
    1. Swartz RJ, Baum GP, Askew RL, Palmer JL, Ross MI, Cormier JN. Reducing patient burden to the FACT-melanoma quality-of-life questionnaire. Melanoma Res. 2012;22:158–163. doi: 10.1097/CMR.0b013e3283511dbf.

Source: PubMed

3
Sottoscrivi