Novel, in-natural-infection subdominant HIV-1 CD8+ T-cell epitopes revealed in human recipients of conserved-region T-cell vaccines

Nicola Borthwick, Zhansong Lin, Tomohiro Akahoshi, Anuska Llano, Sandra Silva-Arrieta, Tina Ahmed, Lucy Dorrell, Christian Brander, Hayato Murakoshi, Masafumi Takiguchi, Tomáš Hanke, Nicola Borthwick, Zhansong Lin, Tomohiro Akahoshi, Anuska Llano, Sandra Silva-Arrieta, Tina Ahmed, Lucy Dorrell, Christian Brander, Hayato Murakoshi, Masafumi Takiguchi, Tomáš Hanke

Abstract

Background: Fine definition of targeted CD8+ T-cell epitopes and their human leucocyte antigen (HLA) class I restriction informs iterative improvements of HIV-1 T-cell vaccine designs and may predict early vaccine success or failure. Here, lymphocytes from volunteers, who had received candidate HIVconsv vaccines expressing conserved sub-protein regions of HIV-1, were used to define the optimum-length target epitopes and their HLA restriction. In HIV-1-positive patients, CD8+ T-cell responses predominantly recognize immunodominant, but hypervariable and therefore less protective epitopes. The less variable, more protective epitopes in conserved regions are typically subdominant. Therefore, induction of strong responses to conserved regions by vaccination provides an opportunity to discover novel important epitopes.

Methods: Cryopreserved lymphocytes from vaccine recipients were expanded by stimulation with 15-mer responder peptides for 10 days to establish short term-cell-line (STCL) effector cells. These were subjected to intracellular cytokine staining using serially truncated peptides and peptide-pulsed 721.221 cells expressing individual HLA class I alleles to define minimal epitope length and HLA restriction by stimulation of IFN-γ and TNF-α production and surface expression of CD107a.

Results: Using lymphocyte samples of 12 vaccine recipients, we defined 14 previously unreported optimal CD8+ T-cell HIV-1 epitopes and their four-digit HLA allele restriction (6 HLA-A, 7 HLA-B and 1 HLA-C alleles). Further 13 novel targets with incomplete information were revealed.

Conclusions: The high rate of discovery of novel CD8+ T-cell effector epitopes warrants further epitope mining in recipients of the conserved-region vaccines in other populations and informs development of HIV-1/AIDS vaccines.

Trial registration: ClinicalTrials.gov NCT01151319.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Conserved-region vaccine immunogen and the…
Fig 1. Conserved-region vaccine immunogen and the HIV-CORE 002 trial regimens.
(A) The box.A schematic representation of the chimaeric design of the first generation conserved immunogen HIVconsv. Capital letters above HIVconsv regions indicate the clade of origin, from which the consensus amino sequence for that region was derived. Individual HIV-1 proteins of region origin are colour coded. (B) The two vaccine regimens of the HIV-CORE 002 trial [18] that the volunteers analyzed in this study received. ChAdV–recombinant non-replicating simian (chimpanzee) adenovirus 63 ChAdV63.HIVconsv; MVA—recombinant non-replicating poxvirus modified vaccinia virus Ankara MVA.HIVconsv; and DNA–‘naked’ plasmid pSG2.HIVconsv DNA. (C and D) Optimal epitope mapping was performed using thawed vaccine-recipients’ PBMCs, which were in vitro expanded with the parental 15-mer peptides for 10 days to establish STCL. (C) Frequencies of vaccine-elicited, HIV-1-specific, in vitro 15-mer peptide (x-axis)-expanded sequential PBMC samples of several volunteers from 5 (black) and 12 (grey) months after the last vaccine administration. Specific cells were enumerated in an IFN-γ ELISPOT assay. Panel (D) overviews the frequencies of peptide-specific CD8+ STCLs over the volunteers and peptides used. Frequencies of specific cells from all tested volunteers expanded by the same 15-mer peptide are shown next to each other above each peptide given on the x-axis. Top and bottom graphs show frequencies of CD8+ T cells producing IFN-γ and TNF-α, respectively. S2 Table for the list of peptides and responding volunteers.

References

    1. Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C, Zamarreno J, et al. Definition of the viral targets of protective HIV-1-specific T cell responses. J Transl Med. 2011;9:208 Epub 2011/12/14. doi:
    1. Murakoshi H, Akahoshi T, Koyanagi M, Chikata T, Naruto T, Maruyama R, et al. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes. Journal of virology. 2015;89:5330–9. doi:
    1. Walker B, McMichael A. The T-Cell Response to HIV. Cold Spring Harb Perspect Med. 2012;2(11):1–19. Epub 2012/09/25.
    1. LLano A, Williams A, Olvera A, Silva-Arrieta S, Brander C. Best-Characterized HIV-1 CTL Epitopes: The 2013 Update. In: Los Alamos National Laboratory TBaB, editor. HIV Immunology and HIV/SIV Vaccine Databases. Los Alamos, New Mexico2013. p. 3–25.
    1. Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296(5577):2354–60. doi:
    1. Taylor BS, Sobieszczyk ME, McCutchan FE, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med. 2008;358(15):1590–602. PubMed Central PMCID: PMCPMC2614444. doi:
    1. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, Ogunlesi AO, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991;354:453–9. doi:
    1. Thananchai H, Makadzange T, Maenaka K, Kuroki K, Peng Y, Conlon C, et al. Reciprocal recognition of an HLA-Cw4-restricted HIV-1 gp120 epitope by CD8+ T cells and NK cells. Aids. 2009;23(2):189–93. doi:
    1. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12. doi:
    1. Frahm N, Kiepiela P, Adams S, Linde CH, Hewitt HS, Sango K, et al. Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat Immunol. 2006;7(2):173–8. doi:
    1. Hanke T. Conserved immunogens in prime-bost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther. 2014;14:601–16. doi:
    1. Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J, Hahn BH, et al. HIV-Host Interactions: Implications for Vaccine Design. Cell host & microbe. 2016;19(3):292–303. PubMed Central PMCID: PMCPMC4823811.
    1. Letourneau S, Im E-J, Mashishi T, Brereton C, Bridgeman A, Yang H, et al. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PloS one. 2007;2:e984 doi:
    1. Ondondo B, Murakoshi H, Clutton G, Abdul-Jawad S, Wee EG, Gatanaga H, et al. Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection. Mol Ther. 2016;24(4):832–42. doi:
    1. Ternette N, Block P, Bernabeu AS, Borthwick N, Pappalardo E, Abdul-Jawad S, et al. Early kinetics of HLA class I-associated peptidome of MVA.HIVconsv-infected cells. Journal of virology. 2015.
    1. Ternette N, Yang H, Partridge T, Llano A, Cedeño S, Fischer R, et al. Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected cells Eur J Immunol. In press.
    1. Ahmed T, Borthwick NJ, Gilmour J, Hayes P, Dorrell L, Hanke T. Control of HIV-1 replication in vitro by vaccine-induced human CD8 T cells through conserved subdominant Pol epitopes. Vaccine. 2016;34:1215–24. doi:
    1. Borthwick N, Ahmed T, Ondondo B, Hayes P, Rose A, Ebrahimsa U, et al. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol Ther. 2014;22:464–75. Epub 2013/10/30. doi:
    1. Mutua G, Farah B, Langat R, Indangasi J, Ogola S, Onsembe B, et al. Broad HIV-1 inhibition in vitro by vaccine-elicited CD8+ T cells in African adults. Mol Ther Methods Clin Dev. 2016;3:16061 doi:
    1. Hayton EJ, Rose A, Ibrahimsa U, Del Sorbo M, Capone S, Crook A, et al. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial. PloS one. 2014;9(7):e101591 PubMed Central PMCID: PMC4090156. doi:
    1. Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008;9:1 PubMed Central PMCID: PMCPMC2245908. doi:
    1. Sabbaj S, Bansal A, Ritter GD, Perkins C, Edwards BH, Gough E, et al. Cross-reactive CD8+ T cell epitopes identified in US adolescent minorities. Journal of acquired immune deficiency syndromes (1999). 2003;33(4):426–38. Epub 2003/07/19.
    1. Zhai S, Zhuang Y, Song Y, Li S, Huang D, Kang W, et al. HIV-1-specific cytotoxic T lymphocyte (CTL) responses against immunodominant optimal epitopes slow the progression of AIDS in China. Current HIV research. 2008;6(4):335–50. Epub 2008/08/12.
    1. Draenert R, Allen TM, Liu Y, Wrin T, Chappey C, Verrill CL, et al. Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. The Journal of experimental medicine. 2006;203(3):529–39. Epub 2006/03/15. PubMed Central PMCID: PMCPMC2118231. doi:
    1. Sriwanthana B, Hodge T, Mastro TD, Dezzutti CS, Bond K, Stephens HA, et al. HIV-specific cytotoxic T lymphocytes, HLA-A11, and chemokine-related factors may act synergistically to determine HIV resistance in CCR5 delta32-negative female sex workers in Chiang Rai, northern Thailand. AIDS research and human retroviruses. 2001;17(8):719–34. Epub 2001/06/29. doi:
    1. Yaciuk JC, Skaley M, Bardet W, Schafer F, Mojsilovic D, Cate S, et al. Direct interrogation of viral peptides presented by the class I HLA of HIV-infected T cells. Journal of virology. 2014;88(22):12992–3004. PubMed Central PMCID: PMCPMC4249081. doi:
    1. Shiga H, Shioda T, Tomiyama H, Takamiya Y, Oka S, Kimura S, et al. Identification of multiple HIV-1 cytotoxic T-cell epitopes presented by human leukocyte antigen B35 molecules. Aids. 1996;10(10):1075–83. Epub 1996/09/01.
    1. Sipsas NV, Kalams SA, Trocha A, He S, Blattner WA, Walker BD, et al. Identification of type-specific cytotoxic T lymphocyte responses to homologous viral proteins in laboratory workers accidentally infected with HIV-1. The Journal of clinical investigation. 1997;99(4):752–62. Epub 1997/02/15. PubMed Central PMCID: PMCPMC507860. doi:
    1. Bansal A, Gough E, Sabbaj S, Ritter D, Yusim K, Sfakianos G, et al. CD8 T-cell responses in early HIV-1 infection are skewed towards high entropy peptides. Aids. 2005;19(3):241–50. Epub 2005/02/19.
    1. Li F, Finnefrock AC, Dubey SA, Korber BT, Szinger J, Cole S, et al. Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the step study. PloS one. 2011;6(6):e20479 Epub 2011/06/23. doi:
    1. Yusim K, Szinger JJ, Honeyborne I, Calef C, Goulder PJR, Korber BTM. Enhanced Motif Scan: A Tool to Scan for HLA Anchor Residues in Proteins. In: Los Alamos National Laboratory TBaB, editor. HIV Immunology and HIV/SIV Vaccine Databases. Los Alamos, New Mexico2003. p. 25–36.
    1. De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W. Identification of immunogenic HLA-B7 "Achilles' heel" epitopes within highly conserved regions of HIV. Vaccine. 2008;26(24):3059–71. Epub 2008/01/22. PubMed Central PMCID: PMCPMC2553891. doi:
    1. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769–75. Epub 2004/12/14. doi:
    1. Threlkeld SC, Wentworth PA, Kalams SA, Wilkes BM, Ruhl DJ, Keogh E, et al. Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily: implications for vaccine development. Journal of immunology (Baltimore, Md: 1950). 1997;159(4):1648–57. Epub 1997/08/15.
    1. Peretz Y, Marra O, Thomas R, Legault D, Cote P, Boulassel MR, et al. Relative contribution of HIV-specific functional lymphocyte subsets restricted by protective and non-protective HLA alleles. Viral immunology. 2011;24(3):189–98. Epub 2011/06/15. doi:
    1. Ternette N, Block PD, Sanchez-Bernabeu A, Borthwick N, Pappalardo E, Abdul-Jawad S, et al. Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. Journal of virology. 2015;89(11):5760–71. PubMed Central PMCID: PMCPMC4442425. doi:
    1. Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, et al. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol. 2007;37(9):2419–33. PubMed Central PMCID: PMC2628559. doi:
    1. Goulder PJ, Addo MM, Altfeld MA, Rosenberg ES, Tang Y, Govender U, et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by elispot and intracellular cytokine staining assays. Journal of virology. 2001;75(3):1339–47. PubMed Central PMCID: PMC114040. doi:
    1. Rathod R, Baig MS, Khandelwal PN, Kulkarni SG, Gade PR, Siddiqui S. Results of a single blind, randomized, placebo-controlled clinical trial to study the effect of intravenous L-carnitine supplementation on health-related quality of life in Indian patients on maintenance hemodialysis. Indian J Med Sci. 2006;60(4):143–53.
    1. Schneidewind A, Tang Y, Brockman MA, Ryland EG, Dunkley-Thompson J, Steel-Duncan JC, et al. Maternal transmission of human immunodeficiency virus escape mutations subverts HLA-B57 immunodominance but facilitates viral control in the haploidentical infant. Journal of virology. 2009;83(17):8616–27. Epub 2009/06/12. PubMed Central PMCID: PMCPMC2738193. doi:
    1. Balamurugan A, Ng HL, Yang OO. Rapid T cell receptor delineation reveals clonal expansion limitation of the magnitude of the HIV-1-specific CD8+ T cell response. Journal of immunology (Baltimore, Md: 1950). 2010;185(10):5935–42. Epub 2010/10/15. PubMed Central PMCID: PMCPMC3043618.
    1. Rosario M, Bridgeman A, Quakkelaar ED, Quigley MF, Hill BJ, Knudsen ML, et al. Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques. Eur J Immunol. 2010;40:1973–84. Epub 2010/05/15. doi:
    1. Wang S, Sun Y, Zhai S, Zhuang Y, Zhao S, Kang W, et al. Identification of HLA-A11-restricted HIV-1-specific cytotoxic T-lymphocyte epitopes in China. Current HIV research. 2007;5(1):119–28. Epub 2007/02/03.
    1. Bihl F, Frahm N, Di Giammarino L, Sidney J, John M, Yusim K, et al. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses. Journal of immunology. 2006;176(7):4094–101. Epub 2006/03/21.
    1. Mothe B, Moltó J, Manzardo C, Coll J, Puertas MC, Martinez-Picado J, et al. Viral control induced by HIVconsv vaccines & Romidepsin in early treated individuals. The Conference on Retroviruses and Opportunistic Infections; Seattle, WA, USA2017.
    1. Naarding MA, Fernandez N, Kappes JC, Hayes P, Ahmed T, Icyuz M, et al. Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses. J Immunol Methods. 2013;161:161–73. Epub 2013/12/03.
    1. Ternette N, Yang H, Partridge T, Llano A, Cedeno S, Fischer R, et al. Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells. Eur J Immunol. 2016;46(1):60–9. PubMed Central PMCID: PMCPMC4737398. doi:

Source: PubMed

3
Sottoscrivi