Corticospinal Excitability in Children with Congenital Hemiparesis

Chao-Ying Chen, Tonya L Rich, Jessica M Cassidy, Bernadette T Gillick, Chao-Ying Chen, Tonya L Rich, Jessica M Cassidy, Bernadette T Gillick

Abstract

Transcranial magnetic stimulation (TMS) can be used as an assessment or intervention to evaluate or influence brain activity in children with hemiparetic cerebral palsy (CP) commonly caused by perinatal stroke. This communication report analyzed data from two clinical trials using TMS to assess corticospinal excitability in children and young adults with hemiparetic CP. The results of this communication revealed a higher probability of finding a motor evoked potential (MEP) on the non-lesioned hemisphere compared to the lesioned hemisphere (p = 0.005). The resting motor threshold (RMT) was lower on the non-lesioned hemisphere than the lesioned hemisphere (p = 0.013). There was a significantly negative correlation between age and RMT (rs = -0.65, p = 0.003). This communication provides information regarding MEP responses, motor thresholds (MTs) and the association with age during TMS assessment in children with hemiparetic CP. Such findings contribute to the development of future pediatric studies in neuroplasticity and neuromodulation to influence motor function and recovery after perinatal stroke.

Keywords: cerebral palsy; motor evoked potential; motor threshold; perinatal stroke; transcranial magnetic stimulation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Boxplot reflecting medians and ranges of RMTs in both the rTMS (lesioned hemisphere) and tDCS (lesioned and non-lesioned hemispheres) studies. RMT: Resting motor threshold; rTMS: Repetitive transcranial magnetic stimulation; tDCS: Transcranial direct current stimulation; %MSO: Percentage of maximum of machine output.
Figure 2
Figure 2
RMTs of lesioned (grey dashed lines) and non-lesioned (black solid lines) hemisphere. Individual RMTs of both the lesioned and non-lesioned hemispheres in 10 participants in the tDCS study. A significant correlation between lesioned and non-lesioned sides RMTs was found (rs = −0.64, p = 0.044).
Figure 3
Figure 3
Linear correlation between individual participant’s age and RMT values of the non-lesioned and lesioned hemispheres. (A) Strong negative correlation between RMTs of the non-lesioned hemisphere and age (rs = −0.65, p = 0.003); (B) No correlation between RMTs of the lesioned hemisphere and age (rs = −0.37, p = 0.105).

References

    1. Raju T.N., Nelson K.B., Ferriero D., Lynch J.K. Ischemic perinatal stroke: Summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120:609–616. doi: 10.1542/peds.2007-0336.
    1. Lehman L.L., Rivkin M.J. Perinatal arterial ischemic stroke: Presentation, risk factors, evaluation, and outcome. Pediatr. Neurol. 2014;51:760–768. doi: 10.1016/j.pediatrneurol.2014.07.031.
    1. Jaspers E., Byblow W.D., Feys H., Wenderoth N. The corticospinal tract: A biomarker to categorize upper limb functional potential in unilateral cerebral palsy. Front. Pediatr. 2015;3:112. doi: 10.3389/fped.2015.00112.
    1. Scheck S.M., Fripp J., Reid L., Pannek K., Fiori S., Boyd R.N., Rose S.E. Extent of altered white matter in unilateral and bilateral periventricular white matter lesions in children with unilateral cerebral palsy. Res. Dev. Disabil. 2016;55:368–376.
    1. Welniarz Q., Dusart I., Gallea C., Roze E. One hand clapping: Lateralization of motor control. Front. Neuroanat. 2015;9:75. doi: 10.3389/fnana.2015.00075.
    1. Norton J.A., Thompson A.K., Chan K.M., Wilman A., Stein R.B. Persistent mirror movements for over sixty years: The underlying mechanisms in a cerebral palsy patient. Clin. Neurophysiol. 2008;119:80–87. doi: 10.1016/j.clinph.2007.09.120.
    1. Talelli P., Greenwood R.J., Rothwell J.C. Arm function after stroke: Neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin. Neurophysiol. 2006;117:1641–1659. doi: 10.1016/j.clinph.2006.01.016.
    1. Du J., Tian L., Liu W., Hu J., Xu G., Ma M., Fan X., Ye R., Jiang Y., Yin Q., et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: A randomized controlled trial. Eur. J. Neurol. 2016 doi: 10.1111/ene.13105.
    1. Kang N., Summers J.J., Cauraugh J.H. Non-Invasive Brain Stimulation Improves Paretic Limb Force Production: A Systematic Review and Meta-Analysis. Brain Stimul. 2016 doi: 10.1016/j.brs.2016.05.005.
    1. Li J., Zhang X.W., Zuo Z.T., Lu J., Meng C.L., Fang H.Y., Xue R., Fan Y., Guan Y.Z., Zhang W.H. Cerebral Functional Reorganization in Ischemic Stroke after Repetitive Transcranial Magnetic Stimulation: An fMRI Study. CNS Neurosci Ther. 2016 doi: 10.1111/cns.12593.
    1. Eyre J.A., Smith M., Dabydeen L., Clowry G.J., Petacchi E., Battini R., Guzzetta A., Cioni G. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann. Neurol. 2007;62:493–503. doi: 10.1002/ana.21108.
    1. Friel K.M., Kuo H.C., Fuller J., Ferre C.L., Brandao M., Carmel J.B., Bleyenheuft Y., Gowatsky J.L., Stanford A.D., Rowny S.B., et al. Skilled Bimanual Training Drives Motor Cortex Plasticity in Children with Unilateral Cerebral Palsy. Neurorehabil. Neural Repair. 2016;30:834–844. doi: 10.1177/1545968315625838.
    1. Kuhnke N., Juenger H., Walther M., Berweck S., Mall V., Staudt M. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy? Dev. Med. Child Neurol. 2008;50:898–903. doi: 10.1111/j.1469-8749.2008.03119.x.
    1. Kuo H.C., Ferre C.L., Carmel J.B., Gowatsky J.L., Stanford A.D., Rowny S.B., Lisanby S.H., Gordon A.M., Friel K.M. Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Dev. Med. Child Neurol. 2016 doi: 10.1111/dmcn.13192.
    1. Mackey A., Stinear C., Stott S., Byblow W.D. Upper limb function and cortical organization in youth with unilateral cerebral palsy. Front. Neurol. 2014;5:117. doi: 10.3389/fneur.2014.00117.
    1. Staudt M., Ticini L.F., Grodd W., Krageloh-Mann I., Karnath H.O. Functional topography of early periventricular brain lesions in relation to cytoarchitectonic probabilistic maps. Brain Lang. 2008;106:177–183. doi: 10.1016/j.bandl.2008.01.007.
    1. Cassidy J.M., Carey J.R., Lu C., Krach L.E., Feyma T., Durfee W.K., Gillick B.T. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand. Res. Dev. Disabil. 2015;47:154–164. doi: 10.1016/j.ridd.2015.09.010.
    1. Gillick B.T., Krach L.E., Feyma T., Rich T.L., Moberg K., Thomas W., Cassidy J.M., Menk J., Carey J.R. Primed low-frequency repetitive transcranial magnetic stimulation and constraint-induced movement therapy in pediatric hemiparesis: A randomized controlled trial. Dev. Med. Child Neurol. 2014;56:44–52. doi: 10.1111/dmcn.12243.
    1. Grecco L.A., de Almeida Carvalho Duarte N., Mendonca M.E., Cimolin V., Galli M., Fregni F., Santos Oliveira C. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: A randomized controlled double-blind clinical trial. Res. Dev. Disabil. 2014;35:2840–2848. doi: 10.1016/j.ridd.2014.07.030.
    1. Kirton A., Andersen J., Herrero M., Nettel-Aguirre A., Carsolio L., Damji O., Keess J., Mineyko A., Hodge J., Hill M.D. Brain stimulation and constraint for perinatal stroke hemiparesis: The PLASTIC CHAMPS Trial. Neurology. 2016;86:1659–1667. doi: 10.1212/WNL.0000000000002646.
    1. Kirton A., Chen R., Friefeld S., Gunraj C., Pontigon A.M., Deveber G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: A randomised trial. Lancet Neurol. 2008;7:507–513. doi: 10.1016/S1474-4422(08)70096-6.
    1. Valle A.C., Dionisio K., Pitskel N.B., Pascual-Leone A., Orsati F., Ferreira M.J., Boggio P.S., Lima M.C., Rigonatti S.P., Fregni F. Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev. Med. Child Neurol. 2007;49:534–538. doi: 10.1111/j.1469-8749.2007.00534.x.
    1. Bhanpuri N.H., Bertucco M., Young S.J., Lee A.A., Sanger T.D. Multiday Transcranial Direct Current Stimulation Causes Clinically Insignificant Changes in Childhood Dystonia: A Pilot Study. J. Child Neurol. 2015;30:1604–1615. doi: 10.1177/0883073815575369.
    1. Young S.J., Bertucco M., Sanger T.D. Cathodal transcranial direct current stimulation in children with dystonia: A sham-controlled study. J. Child Neurol. 2014;29:232–239. doi: 10.1177/0883073813492385.
    1. Yeo S.S., Jang S.H., Son S.M. The different maturation of the corticospinal tract and corticoreticular pathway in normal brain development: Diffusion tensor imaging study. Front. Hum. Neurosci. 2014;8:573. doi: 10.3389/fnhum.2014.00573.
    1. Gillick B., Menk J., Mueller B., Meekins G., Krach L.E., Feyma T., Rudser K. Synergistic effect of combined transcranial direct current stimulation/constraint-induced movement therapy in children and young adults with hemiparesis: Study protocol. BMC Pediatr. 2015;15 doi: 10.1186/s12887-015-0498-1.
    1. Kirton A., Deveber G., Gunraj C., Chen R. Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: Plastic organization and effects of rTMS. Clin. Neurophysiol. 2010;121:1922–1929. doi: 10.1016/j.clinph.2010.04.021.
    1. Lewis C.P., Nakonezny P.A., Ameis S.H., Vande Voort J.L., Husain M.M., Emslie G.J., Daskalakis Z.J., Croarkin P.E. Cortical inhibitory and excitatory correlates of depression severity in children and adolescents. J. Affect Disord. 2016;190:566–575. doi: 10.1016/j.jad.2015.10.020.
    1. Garvey M.A., Mall V. Transcranial magnetic stimulation in children. Clin. Neurophysiol. 2008;119:973–984. doi: 10.1016/j.clinph.2007.11.048.
    1. Bhandari A., Radhu N., Farzan F., Mulsant B.H., Rajji T.K., Daskalakis Z.J., Blumberger D.M. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation. Clin. Neurophysiol. 2016;127:2834–2845. doi: 10.1016/j.clinph.2016.05.363.
    1. Eyre J.A., Taylor J.P., Villagra F., Smith M., Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57:1543–1554. doi: 10.1212/WNL.57.9.1543.

Source: PubMed

3
Sottoscrivi