Comparison of Abdominal Visceral Adipose Tissue Area Measured by Computed Tomography with That Estimated by Bioelectrical Impedance Analysis Method in Korean Subjects

Dong-Hwa Lee, Kyeong Seon Park, Soyeon Ahn, Eu Jeong Ku, Kyong Yeun Jung, Yoon Ji Kim, Kyoung Min Kim, Jae Hoon Moon, Sung Hee Choi, Kyong Soo Park, Hak Chul Jang, Soo Lim, Dong-Hwa Lee, Kyeong Seon Park, Soyeon Ahn, Eu Jeong Ku, Kyong Yeun Jung, Yoon Ji Kim, Kyoung Min Kim, Jae Hoon Moon, Sung Hee Choi, Kyong Soo Park, Hak Chul Jang, Soo Lim

Abstract

We evaluated the concordance between visceral fat area (VFA) estimated by bioelectrical impedance analysis (BIA) or computed tomography (CT) in Korean subjects with a wide range in age and body mass index (BMI). In 1006 individuals (mean age 55.2 ± 11.8 (19-87) years, mean BMI 26.0 ± 3.5 (17-46) kg/m², 48.9% men), VFA quantified by CT was compared with VFA using multifrequency BIA machines within 15 days. Concordance rates were compared by age or BMI using correlation analysis, Bland-Altman plots, and intraclass correlation coefficient (ICC). Using BIA data, we established a regression formula to reflect CT-VFA. The mean VFAs by CT and BIA were 131.9 ± 57.3 cm² and 110.5 ± 33.9 cm², respectively (r = 0.605, p < 0.001). The mean difference was 21.4 ± 45.6 cm², tending to increase with BMI. In women with BMI <25 kg/m² or age <50 years, the VFAs by BIA were similar to those by CT (ICC = 0.496 in BMI <25 kg/m² and ICC = 0.638 in age <50 years). However, the difference was greater in men with BMI ≥25 kg/m² or age ≥50 years. Applying our formula, the difference between estimations decreased to 0.2 ± 38.2cm². VFA estimated by BIA correlated well with that by CT, but a more accurate formula is needed to match CT data, particularly in older men or subjects with a high BMI.

Keywords: Korean; bioelectrical impedance; computed tomography; visceral fat area.

Figures

Figure 1
Figure 1
Correlation between VFA measured by CT and VFA estimated by BIA (A) and Bland-Altman plot for comparing the two methods (B).
Figure 2
Figure 2
Differences in VFA between CT and BIA methods according to BMI (A) and subjects age (B).
Figure 3
Figure 3
Calibration plots of prediction model in men (A) and women (B).
Figure 3
Figure 3
Calibration plots of prediction model in men (A) and women (B).
Figure 4
Figure 4
Correlation between VFA measured by CT and VFA estimated by BIA (A) and Bland-Altman plot for comparison between two methods (B) in subjects who performed CT and BIA within seven days.

References

    1. Ogden C.L., Carroll M.D., Curtin L.R., McDowell M.A., Tabak C.J., Flegal K.M. Prevalence of overweight and obesity in the united states, 1999–2004. J. Am. Med. Assoc. 2006;295:1549–1555. doi: 10.1001/jama.295.13.1549.
    1. Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011;18:629–639. doi: 10.5551/jat.7922.
    1. Berker D., Koparal S., Isik S., Pasaoglu L., Aydin Y., Erol K., Delibasi T., Guler S. Compatibility of different methods for the measurement of visceral fat in different body mass index strata. Diagn. Interv. Radiol. 2010;16:99–105. doi: 10.4261/1305-3825.DIR.2749-09.1.
    1. Kaess B.M., Pedley A., Massaro J.M., Murabito J., Hoffmann U., Fox C.S. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55:2622–2630. doi: 10.1007/s00125-012-2639-5.
    1. Shah R.V., Murthy V.L., Abbasi S.A., Blankstein R., Kwong R.Y., Goldfine A.B., Jerosch-Herold M., Lima J.A., Ding J., Allison M.A. Visceral adiposity and the risk of metabolic syndrome across body mass index: The mesa study. JACC Cardiovasc. Imaging. 2014;7:1221–1235. doi: 10.1016/j.jcmg.2014.07.017.
    1. Montague C.T., O’Rahilly S. The perils of portliness: Causes and consequences of visceral adiposity. Diabetes. 2000;49:883–888. doi: 10.2337/diabetes.49.6.883.
    1. Kahn B.B., Flier J.S. Obesity and insulin resistance. J. Clin. Investig. 2000;106:473–481. doi: 10.1172/JCI10842.
    1. Yoshizumi T., Nakamura T., Yamane M., Islam A.H., Menju M., Yamasaki K., Arai T., Kotani K., Funahashi T., Yamashita S., et al. Abdominal fat: Standardized technique for measurement at CT. Radiology. 1999;211:283–286. doi: 10.1148/radiology.211.1.r99ap15283.
    1. Ribeiro-Filho F.F., Faria A.N., Azjen S., Zanella M.T., Ferreira S.R. Methods of estimation of visceral fat: Advantages of ultrasonography. Obes. Res. 2003;11:1488–1494. doi: 10.1038/oby.2003.199.
    1. Ryo M., Maeda K., Onda T., Katashima M., Okumiya A., Nishida M., Yamaguchi T., Funahashi T., Matsuzawa Y., Nakamura T., et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabet. Care. 2005;28:451–453. doi: 10.2337/diacare.28.2.451.
    1. Wajchenberg B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000;21:697–738. doi: 10.1210/edrv.21.6.0415.
    1. Sobol W., Rossner S., Hinson B., Hiltbrandt E., Karstaedt N., Santago P., Wolfman N., Hagaman A., Crouse J.R., 3rd Evaluation of a new magnetic resonance imaging method for quantitating adipose tissue areas. Int. J. Obes. 1991;15:589–599.
    1. Van der Kooy K., Seidell J.C. Techniques for the measurement of visceral fat: A practical guide. Int. J. Obes. Relat. Metab. Disord. 1993;17:187–196.
    1. Nagai M., Komiya H., Mori Y., Ohta T., Kasahara Y., Ikeda Y. Development of a new method for estimating visceral fat area with multi-frequency bioelectrical impedance. Tohoku J. Exp. Med. 2008;214:105–112. doi: 10.1620/tjem.214.105.
    1. Unno M., Furusyo N., Mukae H., Koga T., Eiraku K., Hayashi J. The utility of visceral fat level by bioelectrical impedance analysis in the screening of metabolic syndrome—The results of the kyushu and okinawa population study (KOPS) J. Atheroscler. Thromb. 2012;19:462–470. doi: 10.5551/jat.11528.
    1. Nagai M., Komiya H., Mori Y., Ohta T., Kasahara Y., Ikeda Y. Estimating visceral fat area by multifrequency bioelectrical impedance. Diabet. Care. 2010;33:1077–1079. doi: 10.2337/dc09-1099.
    1. Shoji K., Maeda K., Nakamura T., Funahashi T., Matsuzawa Y., Shimomura I. Measurement of visceral fat by abdominal bioelectrical impedance analysis is beneficial in medical checkup. Obes. Res. Clin. Pract. 2008;2 doi: 10.1016/j.orcp.2008.09.001.
    1. Shil Hong E., Khang A.R., Roh E., Jeong Ku E., An Kim Y., Min Kim K., Hoon Moon J., Hee Choi S., Soo Park K., Woong Kim K., et al. Counterintuitive relationship between visceral fat and all-cause mortality in an elderly asian population. Obesity. 2015;23:220–227. doi: 10.1002/oby.20914.
    1. Faria S.L., Faria O.P., Menezes C.S., de Gouvea H.R., de Almeida Cardeal M. Metabolic profile of clinically severe obese patients. Obes. Surg. 2012;22:1257–1262. doi: 10.1007/s11695-012-0651-y.
    1. Poggio E.D., Nef P.C., Wang X., Greene T., van Lente F., Dennis V.W., Hall P.M. Performance of the cockcroft-gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am. J. Kidney Dis. 2005;46:242–252. doi: 10.1053/j.ajkd.2005.04.023.
    1. Posada D., Buckley T.R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst. Boil. 2004;53:793–808. doi: 10.1080/10635150490522304.
    1. Winter J.E., MacInnis R.J., Wattanapenpaiboon N., Nowson C.A. Bmi and all-cause mortality in older adults: A meta-analysis. Am. J. Clin. Nutr. 2014;99:875–890. doi: 10.3945/ajcn.113.068122.
    1. Matsushita Y., Nakagawa T., Shinohara M., Yamamoto S., Takahashi Y., Mizoue T., Yokoyama T., Noda M. How can waist circumference predict the body composition? Diabetol. Metab. Syndr. 2014;6 doi: 10.1186/1758-5996-6-11.
    1. Ashwell M., Gunn P., Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012;13:275–286. doi: 10.1111/j.1467-789X.2011.00952.x.
    1. Yamakage H., Ito R., Tochiya M., Muranaka K., Tanaka M., Matsuo Y., Odori S., Kono S., Shimatsu A., Satoh-Asahara N. The utility of dual bioelectrical impedance analysis in detecting intra-abdominal fat area in obese patients during weight reduction therapy in comparison with waist circumference and abdominal ct. Endocr. J. 2014;61:807–819. doi: 10.1507/endocrj.EJ14-0092.
    1. Dhaliwal S.S., Welborn T.A. Measurement error and ethnic comparisons of measures of abdominal obesity. Prev. Med. 2009;49:148–152. doi: 10.1016/j.ypmed.2009.06.023.
    1. Suh Y.S., Kim D.H., Lee I.K. Usefulness of lumbar AP spine DXA for measuring the percentage of perilumbar regional fat and predicting visceral fat in obese postmenopausal women. Nutrition. 2002;18:84–85. doi: 10.1016/S0899-9007(01)00673-6.
    1. Bonora E., Micciolo R., Ghiatas A.A., Lancaster J.L., Alyassin A., Muggeo M., DeFronzo R.A. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism. 1995;44:1617–1625. doi: 10.1016/0026-0495(95)90084-5.
    1. Rossner S., Bo W.J., Hiltbrandt E., Hinson W., Karstaedt N., Santago P., Sobol W.T., Crouse J.R. Adipose tissue determinations in cadavers—A comparison between cross-sectional planimetry and computed tomography. Int. J. Obes. 1990;14:893–902.
    1. Rosito G.A., Massaro J.M., Hoffmann U., Ruberg F.L., Mahabadi A.A., Vasan R.S., O’Donnell C.J., Fox C.S. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The framingham heart study. Circulation. 2008;117:605–613. doi: 10.1161/CIRCULATIONAHA.107.743062.
    1. Liu J., Fox C.S., Hickson D.A., May W.D., Hairston K.G., Carr J.J., Taylor H.A. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The jackson heart study. J. Clin. Endocrinol. Metab. 2010;95:5419–5426. doi: 10.1210/jc.2010-1378.
    1. Hanley A.J., Wagenknecht L.E., Norris J.M., Bryer-Ash M., Chen Y.I., Anderson A.M., Bergman R., Haffner S.M. Insulin resistance, beta cell dysfunction and visceral adiposity as predictors of incident diabetes: The insulin resistance atherosclerosis study (IRAS) family study. Diabetologia. 2009;52:2079–2086. doi: 10.1007/s00125-009-1464-y.
    1. Matsuzawa Y. Metabolic syndrome—Definition and diagnostic criteria in Japan. J. Atheroscler. Thromb. 2005;12:301. doi: 10.5551/jat.12.301.
    1. Kyle U.G., Bosaeus I., de Lorenzo A.D., Deurenberg P., Elia M., Gomez J.M., Heitmann B.L., Kent-Smith L., Melchior J.C., Pirlich M., et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004;23:1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Kyle U.G., Bosaeus I., de Lorenzo A.D., Deurenberg P., Elia M., Manuel Gomez J., Lilienthal Heitmann B., Kent-Smith L., Melchior J.C., Pirlich M., et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. Volgyi E., Tylavsky F.A., Lyytikainen A., Suominen H., Alen M., Cheng S. Assessing body composition with DXA and bioimpedance: Effects of obesity, physical activity and age. Obesity. 2008;16:700–705. doi: 10.1038/oby.2007.94.
    1. Ida M., Hirata M., Odori S., Mori E., Kondo E., Fujikura J., Kusakabe T., Ebihara K., Hosoda K., Nakao K. Early changes of abdominal adiposity detected with weekly dual bioelectrical impedance analysis during calorie restriction. Obesity. 2013;21 doi: 10.1002/oby.20300.
    1. Pietilainen K.H., Kaye S., Karmi A., Suojanen L., Rissanen A., Virtanen K.A. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, skeletal muscle and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2013;109:1910–1916. doi: 10.1017/S0007114512003698.

Source: PubMed

3
Sottoscrivi