Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells

Harjeet Singh, Matthew J Figliola, Margaret J Dawson, Simon Olivares, Ling Zhang, Ge Yang, Sourindra Maiti, Pallavi Manuri, Vladimir Senyukov, Bipulendu Jena, Partow Kebriaei, Richard E Champlin, Helen Huls, Laurence J N Cooper, Harjeet Singh, Matthew J Figliola, Margaret J Dawson, Simon Olivares, Ling Zhang, Ge Yang, Sourindra Maiti, Pallavi Manuri, Vladimir Senyukov, Bipulendu Jena, Partow Kebriaei, Richard E Champlin, Helen Huls, Laurence J N Cooper

Abstract

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10) T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Harvest and characterization of aAPC.
Figure 1. Harvest and characterization of aAPC.
(A, B) Sepax volume reduction. aAPC clone #4 grown in VueLife bags were harvested using CS-490.1 kit in Sepax II. The Sepax harvest (S, n = 4) was compared to manual (M, n = 1) procedure. The mean pre/post-processing cell-counts (4.9×108 vs 5×108) were similar using the Sepax system. (C) Phenotype of aAPC (clone #4). Flow cytometry analysis showing expression of CD19, CD64, CD86, CD137L and mIL-15 (expressed with EGFP) (mIL-15-EGFP) on K562 aAPC and K562 parental controls.
Figure 2. Schematic of the process of…
Figure 2. Schematic of the process of generating clinical grade CD19-specific T cells.
A MCB (PACT) and WCB (MDACC) were generated for K562-derived aAPC (clone #4). For the generation of CAR+ T cells, aAPC were numerically expanded in bags, harvested using the Sepax II system, irradiated (100 Gy), and cryopreserved for later use. CD19-specific T cells were manufactured as follows; PBMC were isolated from normal donor apheresis products using the Sepax II system and cryopreserved. The PBMC were later thawed, electroporated with the SB DNA plasmids (CD19RCD28 CAR transposon, SB11 transposase) using the Nucleofector System, co-cultured with thawed irradiated aAPC along with cytokines (IL-2 and IL-21) for a culture period of 28 days and cryopreserved.
Figure 3. Phenotype of CAR + T…
Figure 3. Phenotype of CAR+ T cell.
(A) Expression of CD19RCD28 CAR on T cells day after electroporation (culture day 1) and after 28 days of co-culture on aAPC clone #4 along with lack of CD19+ aAPC. (B) CAR expression by western blot analysis using CD3-ζ specific antibody. Whole cell lysates were run on SDS-PAGE under reducing conditions. Molecular weight marker (M), Parental Jurkat cells (Lane 1), CD19RCD28+ Jurkat cells (Lane 2), CARneg control T cells (Lane 3) and CD19RCD28+ T cells (Lane 4). (C) Percent expression of CD3+, CD4+CAR+ and CD8+CAR+ T cells with in a lymphocyte gate in cultures over time. Each symbol represents a separate experiment; the solid lines are mean of the three validation experiments. (D) Immunophenotype of memory/naïve, adhesion, activation, cytolytic and exhaustion markers on CAR+ T cells at the end (d28) of co-culture.
Figure 4. Expansion kinetics and redirected specificity…
Figure 4. Expansion kinetics and redirected specificity of CAR+ T cells.
Genetically modified T cells were co-cultured with aAPC clone #4 for 28 days. At the end of each stimulation cycle (7 days), cells were counted and stained for expression of CAR and CD3. Three validation runs (V1, V2, and V3) were performed and the graphs represent inferred (A) CAR+ T cells, (B) CD3+ T cells, (C) Total viable cells over time. Arrows indicate addition of aAPC to the culture. (D) Lysis of CD19+ targets (Daudiβ2m, NALM-6, CD19+ EL-4) as compared to background lysis of CD19neg EL-4 using 4-hr chromium release assay by CAR+ T cells. Mean ± SD of three validation runs is represented.
Figure 5. Safety profile associated with the…
Figure 5. Safety profile associated with the SB system.
(A) Telomere length of cells was measured using fluorescence in situ hybridization and flow cytometry (Flow-FISH) assay. Predominant T cell population at day 28 (V1 and V2, CD8+ T cells; V3, CD4+ T cells) was compared to respective miltenyi column purified subset of T cells from day 0. Mean ± SD of triplicates for each validation run is represented. (B) Genomic DNA from CAR+ T cells at day 28 was amplified using primers and probes specific for CD19RCD28 CAR. Relative Quantity (RQ) analyses of the CD19RCD28 target copy number was determined using normal donor PBMC as reference and endogenous RNaseP as a normalizer. Mean ± SD of triplicates for each validation run is shown. (C) TCR Vβ analysis of day 28 and day 35 CAR+ T cells. Data shows mean ± SD of three validation run CAR+ T cells as compared to day 0 unmanipulated controls. (D) A representative genomic PCR showing lack of SB11 transposase integration. Genomic DNA (20 ng) was amplified using SB11 or GAPDH primers. CARneg control T cells (lane 5) and CAR+ T cells (lane 7) amplified using SB11 primers; CARneg control T cells (lane 6), CAR+ T cells (lane 8) and Jurkat stably expressing SB11 (lane 4) amplified using GAPDH primers. Jurkat stably expressing SB11 (Jurkat/SB11-IRES2-EGFP) (lane 3) and the linearized plasmid, pKan-CMV-SB11 (lane 2) amplified using SB11 primers were used as positive controls. (E) G-banded karyotypes of CAR+ T cells from the three validation runs reveal no structural or numeric alteration. A representative spread from validation 2 is shown.

References

    1. Jena B, Dotti G, Cooper LJ (2010) Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 116: 1035–1044.
    1. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, et al. (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112: 2261–2271.
    1. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365: 725–733.
    1. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, et al. (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118: 4817–4828.
    1. Cooper LJ JB, Bollard CM (2012) Good T cells for bad B cells. Blood 119: 2700–2702.
    1. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, et al. (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3: 95ra73.
    1. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, et al. (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116: 4099–4102.
    1. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, et al. (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119: 2709–2720.
    1. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, et al. (2013) CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med 5: 177ra138.
    1. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, et al. (2008) Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68: 2961–2971.
    1. Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, et al. (2011) Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 71: 3516–3527.
    1. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91: 501–510.
    1. Izsvak Z, Ivics Z (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9: 147–156.
    1. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, et al. (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66: 10995–11004.
    1. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, et al. (2013) Clinical application of sleeping beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp e50070.
    1. Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, et al. (2012) Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 23: 444–450.
    1. Kim DW, Uetsuki T, Kaziro Y, Yamaguchi N, Sugano S (1990) Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 91: 217–223.
    1. Davies JK, Singh H, Huls H, Yuk D, Lee DA, et al. (2010) Combining CD19 redirection and alloanergization to generate tumor-specific human T cells for allogeneic cell therapy of B-cell malignancies. Cancer Res 70: 3915–3924.
    1. Rabinovich BA, Ketchem RR, Wolfson M, Goldstein L, Skelly M, et al. (2008) A role for the MHC class I-like Mill molecules in nutrient metabolism and wound healing. Immunol Cell Biol 86: 489–496.
    1. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, et al. (2013) Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 36: 112–123.
    1. Jena B, Maiti S, Huls H, Singh H, Lee DA, et al. (2013) Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials. PLoS ONE 8: e57838.
    1. Hollis RP, Nightingale SJ, Wang X, Pepper KA, Yu XJ, et al. (2006) Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol 34: 1333–1343.
    1. Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, et al. (2006) Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 107: 2643–2652.
    1. Mahmoud MS, Fujii R, Ishikawa H, Kawano MM (1999) Enforced CD19 expression leads to growth inhibition and reduced tumorigenicity. Blood 94: 3551–3558.
    1. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, et al. (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22: 589–594.
    1. Yang S, Cohen CJ, Peng PD, Zhao Y, Cassard L, et al. (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther 15: 1411–1423.
    1. Kim JH, Lee SR, Li LH, Park HJ, Park JH, et al. (2011) High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. PLoS ONE 6: e18556.

Source: PubMed

3
Sottoscrivi