Sex differences in body composition and bone mineral density in phenylketonuria: A cross-sectional study

Bridget M Stroup, Karen E Hansen, Diane Krueger, Neil Binkley, Denise M Ney, Bridget M Stroup, Karen E Hansen, Diane Krueger, Neil Binkley, Denise M Ney

Abstract

Background: Low bone mineral density (BMD) and subsequent skeletal fragility have emerged as a long-term complication of phenylketonuria (PKU).

Objective: To determine if there are differences in BMD and body composition between male and female participants with PKU.

Methods: From our randomized, crossover trial [1] of participants with early-treated PKU who consumed a low-phenylalanine (Phe) diet combined with amino acid medical foods (AA-MF) or glycomacropeptide medical foods (GMP-MF), a subset of 15 participants (6 males, 9 females, aged 15-50 y, 8 classical and 7 variant PKU) completed one dual energy X-ray absorptiometry (DXA) scan and 3-day food records after each dietary treatment. Participants reported lifelong compliance with AA-MF. In a crossover design, 8 participants (4 males, 4 females, aged 16-35 y) provided a 24-h urine collection after consuming AA-MF or GMP-MF for 1-3 weeks each.

Results: Male participants had significantly lower mean total body BMD Z-scores (means ± SE, males = - 0.9 ± 0.4; females, 0.2 ± 0.3; p = 0.01) and tended to have lower mean L1-4 spine and total femur BMD Z-scores compared to female participants. Only 50% percent of male participants had total body BMD Z-scores above - 1.0 compared to 100% of females (p = 0.06). Total femur Z-scores were negatively correlated with intake of AA-MF (r = - 0.58; p = 0.048). Males tended to consume more grams of protein equivalents per day from AA-MF (means ± SE, males: 67 ± 6 g, females: 52 ± 4 g; p = 0.057). Males and females demonstrated similar urinary excretion of renal net acid, magnesium and sulfate; males showed a trend for higher urinary calcium excretion compared to females (means ± SE, males: 339 ± 75 mg/d, females: 228 ± 69 mg/d; p = 0.13). Females had a greater percentage of total fat mass compared to males (means ± SE, males: 24.5 ± 4.8%, females: 36.5 ± 2.5%; p = 0.047). Mean appendicular lean mass index was similar between males and females. Male participants had low-normal lean mass based on the appendicular lean mass index.

Conclusions: Males with PKU have lower BMD compared with females with PKU that may be related to higher intake of AA-MF and greater calcium excretion. The trial was registered at www.clinicaltrials.gov as NCT01428258.

Keywords: AA-MF, Amino acid medical foods; ALM, Appendicular lean mass; Amino acid; Appendicular lean mass index; BMD, Bone mineral density; DXA, Dual-energy X-ray absorptiometry; GMP-MF, Glycomacropeptide medical foods; Glycomacropeptide; MF, Medical foods; Medical food; Osteoporosis; PAH, Phenylalanine hydroxylase; PE, Protein equivalent; PKU, Phenylketonuria; PRAL, Potential renal acid load; Phe, Phenylalanine; RDN, Registered Dietitian Nutritionist; Renal net acid; TBS, Trabecular bone score; Trabecular bone score; Tyr, Tyrosine; Urinary calcium excretion.

Figures

Fig. 1
Fig. 1
Comparison of BMD Z-scores of male and female participants with classical and variant PKU. Male participants had significantly lower total body BMD Z-Scores (p = 0.01; males, n = 6; females, n = 9) and tended to have lower L1–4 spine (p = 0.13; males, n = 6; females, n = 9) and total femur BMD Z-Scores (p = 0.08; males, n = 4; females, n = 8) compared to female participants. Values are means ± SE. BMD, bone mineral density; PKU, phenylketonuria.
Fig. 2
Fig. 2
Total femur BMD Z-scores and intake of PE from AA-MF were negatively correlated (r = − 0.58, p = 0.048) based on 13 participants with PKU. AA-MF, amino acid medical foods; BMD, bone mineral density; PE, protein equivalent; PKU, phenylketonuria.

References

    1. Ney D.M., Stroup B.M., Clayton M.K., Murali S.G., Rice G.M., Rohr F., Levy H.L. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial. Am. J. Clin. Nutr. 2016;104:334–345.
    1. Flydal M.I., Martinez A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life. 2013;65:341–349.
    1. Vockley J., Andersson H.C., Antshel K.M., Braverman N.E., Burton B.K., Frazier D.M., Mitchell J., Smith W.E., Thompson B.H., Berry S.A., G. American College of Medical, C. Genomics Therapeutics Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet. Med. 2014;16:188–200.
    1. Singh R.H., Rohr F., Frazier D., Cunningham A., Mofidi S., Ogata B., Splett P.L., Moseley K., Huntington K., Acosta P.B., Vockley J., Van Calcar S.C. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet. Med. 2014;16:121–131.
    1. Singh R.H., Cunningham A.C., Mofidi S., Douglas T.D., Frazier D.M., Hook D.G., Jeffers L., McCune H., Moseley K.D., Ogata B., Pendyal S., Skrabal J., Splett P.L., Stembridge A., Wessel A., Rohr F. Updated, web-based nutrition management guideline for PKU: an evidence and consensus based approach. Mol. Genet. Metab. 2016;118:72–83.
    1. Choukair D., Kneppo C., Feneberg R., Schonau E., Lindner M., Kolker S., Hoffmann G.F., Tonshoff B. Analysis of the functional muscle-bone unit of the forearm in patients with phenylketonuria by peripheral quantitative computed tomography. J. Inherit. Metab. Dis. 2017;40:219–226.
    1. de Groot M.J., Hoeksma M., van Rijn M., Slart R.H., van Spronsen F.J. Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients. Mol. Genet. Metab. 2012;105:566–570.
    1. Solverson P., Murali S.G., Litscher S.J., Blank R.D., Ney D.M. Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet. PLoS One. 2012;7
    1. Stroup B.M., Sawin E.A., Murali S.G., Binkley N., Hansen K.E., Ney D.M. Amino acid medical foods provide a high dietary acid load and increase urinary excretion of renal net acid, calcium, and magnesium compared with Glycomacropeptide medical foods in phenylketonuria. J. Nutr. Metab. 2017;2017:1–12.
    1. Coakley K.E., Douglas T.D., Goodman M., Ramakrishnan U., Dobrowolski S.F., Singh R.H. Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency. J. Inherit. Metab. Dis. 2016;39:363–372.
    1. Perez-Duenas B., Cambra F.J., Vilaseca M.A., Lambruschini N., Campistol J., Camacho J.A. New approach to osteopenia in phenylketonuric patients. Acta Paediatr. 2002;91:899–904.
    1. Miras A., Freire Corbacho A., Rodriguez Garcia J., Leis R., Aldamiz-Echevarria L., Fraga J.M., Couce M.L. Utility of bone turnover markers in metabolic bone disease detection in patients with phenylketonuria. Med. Clin. (Barc.) 2015;144:193–197.
    1. Demirdas S., van Spronsen F.J., Hollak C.E., van der Lee J.H., Bisschop P.H., Vaz F.M., Ter Horst N.M., Rubio-Gozalbo M.E., Bosch A.M. Micronutrients, essential fatty acids and bone health in phenylketonuria. Ann. Nutr. Metab. 2017;70:111–121.
    1. Mendes A.B., Martins F.F., Cruz W.M., da Silva L.E., Abadesso C.B., Boaventura G.T. Bone development in children and adolescents with PKU. J. Inherit. Metab. Dis. 2012;35:425–430.
    1. Modan-Moses D., Vered I., Schwartz G., Anikster Y., Abraham S., Segev R., Efrati O. Peak bone mass in patients with phenylketonuria. J. Inherit. Metab. Dis. 2007;30:202–208.
    1. Allen J.R., Humphries I.R., Waters D.L., Roberts D.C., Lipson A.H., Howman-Giles R.G., Gaskin K.J. Decreased bone mineral density in children with phenylketonuria. Am. J. Clin. Nutr. 1994;59:419–422.
    1. Porta F., Spada M., Lala R., Mussa A. Phalangeal quantitative ultrasound in children with phenylketonuria: a pilot study. Ultrasound Med. Biol. 2008;34:1049–1052.
    1. Carson D.J., Greeves L.G., Sweeney L.E., Crone M.D. Osteopenia and phenylketonuria. Pediatr. Radiol. 1990;20:598–599.
    1. Geiger K.E., Koeller D.M., Harding C.O., Huntington K.L., Gillingham M.B. Normal vitamin D levels and bone mineral density among children with inborn errors of metabolism consuming medical food-based diets. Nutr. Res. 2016;36:101–108.
    1. Nagasaka H., Tsukahara H., Takatani T., Sanayama Y., Takayanagi M., Ohura T., Sakamoto O., Ito T., Wada M., Yoshino M., Ohtake A., Yorifuji T., Hirayama S., Miida T., Fujimoto H., Mochizuki H., Hattori T., Okano Y. Cross-sectional study of bone metabolism with nutrition in adult classical phenylketonuric patients diagnosed by neonatal screening. J. Bone Miner. Metab. 2011;29:737–743.
    1. Tanaka N.Y.Y., Turcato M.F., Nicoletti C.F., Nonino C.B., Martins L.D., Iannetta O., Guerreiro C.T., Santos G.G., Marchini J.S. Effects of short-term calcium supplementation in children and adolescents with phenylketonuria. J. Clin. Densitom. 2017;21:48–53.
    1. Zeman J., Bayer M., Stepan J. Bone mineral density in patients with phenylketonuria. Acta Paediatr. 1999;88:1348–1351.
    1. Greeves L.G., Carson D.J., Magee A., Patterson C.C. Fractures and phenylketonuria. Acta Paediatr. 1997;86:242–244.
    1. Hillman L., Schlotzhauer C., Lee D., Grasela J., Witter S., Allen S., Hillman R. Decreased bone mineralization in children with phenylketonuria under treatment. Eur. J. Pediatr. 1996;155(Suppl. 1):S148–152.
    1. Koura H.M., Abdallah Ismail N., Kamel A.F., Ahmed A.M., Saad-Hussein A., Effat L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch. Med. Sci. 2011;7:493–500.
    1. Porta F., Mussa A., Zanin A., Greggio N.A., Burlina A., Spada M. Impact of metabolic control on bone quality in phenylketonuria and mild hyperphenylalaninemia. J. Pediatr. Gastroenterol. Nutr. 2011;52:345–350.
    1. Silva B.C., Leslie W.D., Resch H., Lamy O., Lesnyak O., Binkley N., McCloskey E.V., Kanis J.A., Bilezikian J.P. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 2014;29:518–530.
    1. Studenski S.A., Peters K.W., Alley D.E., Cawthon P.M., McLean R.R., Harris T.B., Ferrucci L., Guralnik J.M., Fragala M.S., Kenny A.M., Kiel D.P., Kritchevsky S.B., Shardell M.D., Dam T.T., Vassileva M.T. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:547–558.
    1. Zwart S.R., Davis-Street J.E., Paddon-Jones D., Ferrando A.A., Wolfe R.R., Smith S.M. Amino acid supplementation alters bone metabolism during simulated weightlessness. J. Appl. Physiol. (1985) 2005;99:134–140.
    1. Remer T., Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am. J. Clin. Nutr. 1994;59:1356–1361.
    1. Report of a WHO Expert Committee World Health Organ Tech Rep Ser. Vol. 854. 1995. Physical status: the use and interpretation of anthropometry; pp. 1–452.
    1. Dawson-Hughes B., Bischoff-Ferrari H. Considerations concerning the definition of sarcopenia. Osteoporos. Int. 2016;27:3139–3144.
    1. Hansen K.E., Ney D. A systematic review of bone mineral density and fractures in phenylketonuria. J. Inherit. Metab. Dis. 2014;37:875–880.
    1. Demirdas S., Coakley K.E., Bisschop P.H., Hollak C.E., Bosch A.M., Singh R.H. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J. Rare Dis. 2015;10:17.
    1. Gropper S.S., Acosta P.B. Effect of simultaneous ingestion of L-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. J. Parenter. Enteral Nutr. 1991;15:48–53.
    1. Metges C.C., El-Khoury A.E., Selvaraj A.B., Tsay R.H., Atkinson A., Regan M.M., Bequette B.J., Young V.R. Kinetics of L-[1-(13)C]leucine when ingested with free amino acids, unlabeled or intrinsically labeled casein. Am. J. Physiol. Endocrinol. Metab. 2000;278:E1000–1009.
    1. Dangin M., Boirie Y., Garcia-Rodenas C., Gachon P., Fauquant J., Callier P., Ballevre O., Beaufrere B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001;280:E340–348.
    1. Christen P., Ito K., Ellouz R., Boutroy S., Sornay-Rendu E., Chapurlat R.D., van Rietbergen B. Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 2014;5:4855.

Source: PubMed

3
Sottoscrivi