Coronary microvascular dysfunction in patients with stable coronary artery disease: The CE-MARC 2 coronary physiology sub-study

David Corcoran, Robin Young, David Adlam, Alex McConnachie, Kenneth Mangion, David Ripley, David Cairns, Julia Brown, Chiara Bucciarelli-Ducci, Andreas Baumbach, Rajesh Kharbanda, Keith G Oldroyd, Gerry P McCann, John P Greenwood, Colin Berry, David Corcoran, Robin Young, David Adlam, Alex McConnachie, Kenneth Mangion, David Ripley, David Cairns, Julia Brown, Chiara Bucciarelli-Ducci, Andreas Baumbach, Rajesh Kharbanda, Keith G Oldroyd, Gerry P McCann, John P Greenwood, Colin Berry

Abstract

Background: In patients with angina undergoing invasive management, no obstructive coronary artery disease (NOCAD) is a common finding, and angina may persist following percutaneous coronary intervention (PCI). Coronary microvascular dysfunction may be relevant. We aimed to assess the proportion of patients presenting with suspected CAD who had coronary microvascular dysfunction.

Methods: Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease 2 (CE-MARC 2) was a prospective multicenter randomised controlled trial of functional imaging versus guideline-based management in patients with suspected CAD. Invasive coronary angiography was protocol-directed. Fractional flow reserve (FFR) and parameters of microvascular function (coronary flow reserve (CFR), index of microcirculatory resistance (IMR), resistance reserve ratio (RRR)) were measured in major epicardial coronary arteries with ≥40-≤90% diameter stenosis. An FFR value ≤0.80 indicated the presence of obstructive CAD.

Results: 267/1202 (22.2%) patients underwent angiography and 81 (30%) patients had FFR measured. 63 (78%) of these patients had microvascular function assessed in 85 arteries (mean age 58.5 ± 8.2 years; 47 (75%) male). 25/63 (40%) patients had NOCAD, and of these, 17 (68%) had an abnormality ≥1 parameter of microvascular function (abnormal IMR (≥25), abnormal CFR (<2.0), and abnormal RRR (<2.0) occurred in 10 (40%), 12 (48%), and 11 (44%), respectively). 38/63 (60%) patients had obstructive epicardial CAD. Of these patients, 15/38 (39%), 20/38 (53%), and 12/38 (32%) had an abnormal IMR, CFR and RRR, respectively.

Conclusions: Coronary microvascular dysfunction is common in patients with angina. Invasive assessment of microvascular function may be informative and relevant for decision-making in patients with both NOCAD and obstructive epicardial CAD.

Clinical trial registration: ClinicalTrials.gov Identifier: NCT01664858.

Keywords: Angina; Coronary artery disease; Coronary microvascular dysfunction; Stable ischaemic heart disease.

Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram. CONSORT flow diagram of patients enrolled in the CE-MARC 2 microvascular sub-study. Of 1202 patients enrolled into the CE-MARC 2 trial, 267 (22.2%) underwent invasive coronary angiography and 119 (45%) of these patients had an indication for FFR measurement. Thirty-eight (32%) of these patients did not have FFR measured for the following reasons: severe obstructive CAD, n = 15; urgent invasive management, n = 3; clinical and technical factors, n = 20. Eighty-one patients had FFR measured in at least one coronary artery (115 vessels) and additional parameters of microvascular function were available for 63/81 (78%) patients in 85 vessels. Overall, 63 patients had coronary microvascular function assessed, including 22, 18 and 23 patients randomised to CMR-guided, MPS-guided and NICE management-guided care, respectively. FFR = fractional flow reserve.
Fig. 2
Fig. 2
Abnormal invasive coronary microvascular function test results. Abnormal IMR, CFR and RRR on a per-patient and per-vessel basis. FFR = fractional flow reserve, IMR = index of microcirculatory resistance, CFR = coronary flow reserve, RRR = resistance reserve ratio.

References

    1. Mortality G.B.D. Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1459–1544.
    1. Patel M.R., Peterson E.D., Dai D., Brennan J.M., Redberg R.F., Anderson H.V., Brindis R.G., Douglas P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010;362:886–895.
    1. Al-Lamee R., Thompson D., Dehbi H.M., Sen S., Tang K., Davies J., Keeble T., Mielewczik M., Kaprielian R., Malik I.S., Nijjer S.S., Petraco R., Cook C., Ahmad Y., Howard J., Baker C., Sharp A., Gerber R., Talwar S., Assomull R., Mayet J., Wensel R., Collier D., Shun-Shin M., Thom S.A., Davies J.E., Francis D.P., investigators O. Percutaneous coronary intervention in stable angina (orbita): A double-blind, randomised controlled trial. Lancet. 2018;391:31–40.
    1. Camici P.G., d'Amati G., Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat. Rev. Cardiol. 2015;12:48–62.
    1. Sara J.D., Widmer R.J., Matsuzawa Y., Lennon R.J., Lerman L.O., Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc. Interv. 2015;8:1445–1453.
    1. Ong P., Athanasiadis A., Borgulya G., Vokshi I., Bastiaenen R., Kubik S., Hill S., Schaufele T., Mahrholdt H., Kaski J.C., Sechtem U. Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation. 2014;129:1723–1730.
    1. Lee J.M., Jung J.H., Hwang D., Park J., Fan Y., Na S.H., Doh J.H., Nam C.W., Shin E.S., Koo B.K. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J. Am. Coll. Cardiol. 2016;67:1158–1169.
    1. Gulati M., Cooper-DeHoff R.M., McClure C., Johnson B.D., Shaw L.J., Handberg E.M., Zineh I., Kelsey S.F., Arnsdorf M.F., Black H.R., Pepine C.J., Merz C.N. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease: a report from the women's ischemia syndrome evaluation study and the St James women take heart project. Arch. Intern. Med. 2009;169:843–850.
    1. Murthy V.L., Naya M., Taqueti V.R., Foster C.R., Gaber M., Hainer J., Dorbala S., Blankstein R., Rimoldi O., Camici P.G., Di Carli M.F. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–2527.
    1. Task Force M., Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A., Bugiardini R., Crea F., Cuisset T., Di Mario C., Ferreira J.R., Gersh B.J., Gitt A.K., Hulot J.S., Marx N., Opie L.H., Pfisterer M., Prescott E., Ruschitzka F., Sabate M., Senior R., Taggart D.P., van der Wall E.E., Vrints C.J., Guidelines ESCCfP, Zamorano J.L., Achenbach S., Baumgartner H., Bax J.J., Bueno H., Dean V., Deaton C., Erol C., Fagard R., Ferrari R., Hasdai D., Hoes A.W., Kirchhof P., Knuuti J., Kolh P., Lancellotti P., Linhart A., Nihoyannopoulos P., Piepoli M.F., Ponikowski P., Sirnes P.A., Tamargo J.L., Tendera M., Torbicki A., Wijns W., Windecker S., Document R., Knuuti J., Valgimigli M., Bueno H., Claeys M.J., Donner-Banzhoff N., Erol C., Frank H., Funck-Brentano C., Gaemperli O., Gonzalez-Juanatey J.R., Hamilos M., Hasdai D., Husted S., James S.K., Kervinen K., Kolh P., Kristensen S.D., Lancellotti P., Maggioni A.P., Piepoli M.F., Pries A.R., Romeo F., Ryden L., Simoons M.L., Sirnes P.A., Steg P.G., Timmis A., Wijns W., Windecker S., Yildirir A., Zamorano J.L. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European society of cardiology. Eur. Heart J. 2013;34:2949–3003. (2013)
    1. Bairey Merz C.N., Pepine C.J., Walsh M.N., Fleg J.L. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135:1075–1092.
    1. Echavarria-Pinto M., Escaned J., Macias E., Medina M., Gonzalo N., Petraco R., Sen S., Jimenez-Quevedo P., Hernandez R., Mila R., Ibanez B., Nunez-Gil I.J., Fernandez C., Alfonso F., Banuelos C., Garcia E., Davies J., Fernandez-Ortiz A., Macaya C. Disturbed coronary hemodynamics in vessels with intermediate stenoses evaluated with fractional flow reserve: a combined analysis of epicardial and microcirculatory involvement in ischemic heart disease. Circulation. 2013;128:2557–2566.
    1. Lee B.K., Lim H.S., Fearon W.F., Yong A.S., Yamada R., Tanaka S., Lee D.P., Yeung A.C., Tremmel J.A. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131:1054–1060.
    1. Echavarria-Pinto M., van de Hoef T.P., Serruys P.W., Piek J.J., Escaned J. Facing the complexity of ischaemic heart disease with intracoronary pressure and flow measurements: beyond fractional flow reserve interrogation of the coronary circulation. Curr. Opin. Cardiol. 2014;29:564–570.
    1. Greenwood J.P., Ripley D.P., Berry C., McCann G.P., Plein S., Bucciarelli-Ducci C., Dall'Armellina E., Prasad A., Bijsterveld P., Foley J.R., Mangion K., Sculpher M., Walker S., Everett C.C., Cairns D.A., Sharples L.D., Brown J.M., Investigators C.-M. Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or nice guidelines on subsequent unnecessary angiography rates: the ce-marc 2 randomized clinical trial. JAMA. 2016;316:1051–1060.
    1. Hendel R.C., Berman D.S., Di Carli M.F., Heidenreich P.A., Henkin R.E., Pellikka P.A., Pohost G.M., Williams K.A., American College of Cardiology Foundation Appropriate Use Criteria Task F, American Society of Nuclear C, American College of R, American Heart A, American Society of E, Society of Cardiovascular Computed T, Society for Cardiovascular Magnetic R, Society of Nuclear M ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American college of cardiology foundation appropriate use criteria task force, the American society of nuclear cardiology, the American college of radiology, the American heart association, the American society of echocardiography, the society of cardiovascular computed tomography, the society for cardiovascular magnetic resonance, and the society of nuclear medicine. Circulation. 2009;119:e561–587.
    1. Excellence NIfHaC . 2010. Chest Pain of Recent Onset: Assessment and Diagnosis.
    1. Gensini G.G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 1983;51:606.
    1. Pijls N.H., De Bruyne B., Peels K., Van Der Voort P.H., Bonnier H.J., Bartunek J.K.J.J., Koolen J.J. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 1996;334:1703–1708.
    1. Gould K.L., Lipscomb K., Hamilton G.W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 1974;33:87–94.
    1. Fearon W.F., Balsam L.B., Farouque H.M., Caffarelli A.D., Robbins R.C., Fitzgerald P.J., Yock P.G., Yeung A.C. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–3132.
    1. Yong A.S., Layland J., Fearon W.F., Ho M., Shah M.G., Daniels D., Whitbourn R., Macisaac A., Kritharides L., Wilson A., Ng M.K. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc. Interv. 2013;6:53–58.
    1. Layland J., Carrick D., McEntegart M., Ahmed N., Payne A., McClure J., Sood A., McGeoch R., MacIsaac A., Whitbourn R., Wilson A., Oldroyd K., Berry C. Vasodilatory capacity of the coronary microcirculation is preserved in selected patients with non-st-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 2013;6:231–236.
    1. Tonino P.A., De Bruyne B., Pijls N.H., Siebert U., Ikeno F., van't Veer M., Klauss V., Manoharan G., Engstrom T., Oldroyd K.G., Ver Lee P.N., PA MacCarthy, Fearon W.F., Investigators F.S. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009;360:213–224.
    1. Panting J.R., Gatehouse P.D., Yang G.Z., Grothues F., Firmin D.N., Collins P., Pennell D.J. Abnormal subendocardial perfusion in cardiac syndrome x detected by cardiovascular magnetic resonance imaging. N. Engl. J. Med. 2002;346:1948–1953.
    1. Thomson L.E., Wei J., Agarwal M., Haft-Baradaran A., Shufelt C., Mehta P.K., Gill E.B., Johnson B.D., Kenkre T., Handberg E.M., Li D., Sharif B., Berman D.S., Petersen J.W., Pepine C.J., Bairey Merz C.N. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A national heart, lung, and blood institute-sponsored study from the women's ischemia syndrome evaluation. Circ. Cardiovasc. Imaging. 2015;8
    1. Hsu L.Y., Groves D.W., Aletras A.H., Kellman P., Arai A.E. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc. Imaging. 2012;5:154–166.
    1. Reis S.E., Holubkov R., Conrad Smith A.J., Kelsey S.F., Sharaf B.L., Reichek N., Rogers W.J., Merz C.N., Sopko G., Pepine C.J., Investigators W. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI wise study. Am. Heart J. 2001;141:735–741.
    1. Lee J.M., Layland J., Jung J.H., Lee H.J., Echavarria-Pinto M., Watkins S., Yong A.S., Doh J.H., Nam C.W., Shin E.S., Koo B.K., Ng M.K., Escaned J., Fearon W.F., Oldroyd K.G. Integrated physiologic assessment of ischemic heart disease in real-world practice using index of microcirculatory resistance and fractional flow reserve: insights from the international index of microcirculatory resistance registry. Circ. Cardiovasc. Interv. 2015;8
    1. Kobayashi Y., Fearon W.F., Honda Y., Tanaka S., Pargaonkar V., Fitzgerald P.J., Lee D.P., Stefanick M., Yeung A.C., Tremmel J.A. Effect of sex differences on invasive measures of coronary microvascular dysfunction in patients with angina in the absence of obstructive coronary artery disease. JACC Cardiovasc. Interv. 2015;8:1433–1441.
    1. Izzo P., Macchi A., De Gennaro L., Gaglione A., Di Biase M., Brunetti N.D. Recurrent angina after coronary angioplasty: mechanisms, diagnostic and therapeutic options. Eur. Heart J. Acute Cardiovasc. Care. 2012;1:158–169.
    1. Kim M.C., Kini A., Sharma S.K. Refractory angina pectoris: mechanism and therapeutic options. J. Am. Coll. Cardiol. 2002;39:923–934.
    1. Stergiopoulos K., Boden W.E., Hartigan P., Mobius-Winkler S., Hambrecht R., Hueb W., Hardison R.M., Abbott J.D., Brown D.L. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern. Med. 2014;174:232–240.
    1. Ong P., Athanasiadis A., Perne A., Mahrholdt H., Schaufele T., Hill S., Sechtem U. Coronary vasomotor abnormalities in patients with stable angina after successful stent implantation but without in-stent restenosis. Clin. Res. Cardiol. 2014;103:11–19.
    1. Uren N.G., Crake T., Lefroy D.C., de Silva R., Davies G.J., Maseri A. Delayed recovery of coronary resistive vessel function after coronary angioplasty. J. Am. Coll. Cardiol. 1993;21:612–621.
    1. Selvanayagam J.B., Cheng A.S., Jerosch-Herold M., Rahimi K., Porto I., van Gaal W., Channon K.M., Neubauer S., Banning A.P. Effect of distal embolization on myocardial perfusion reserve after percutaneous coronary intervention: a quantitative magnetic resonance perfusion study. Circulation. 2007;116:1458–1464.
    1. investigators S.-H. Ct coronary angiography in patients with suspected angina due to coronary heart disease (scot-heart): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–2391.
    1. Lewin H.C., Hachamovitch R., Harris A.G., Williams C., Schmidt J., Harris M., Van Train K., Siligan G., Berman D.S. Sustained reduction of exercise perfusion defect extent and severity with isosorbide mononitrate (Imdur) as demonstrated by means of technetium 99 m sestamibi. J. Nucl. Cardiol. 2000;7:342–353.
    1. Sheikh A.R.W.J., Bariey Merz N., Beltrame J.F. Expert Analysis. 2016. The current state of invasive coronary evaluation and management of patients with angina and nonobstructive coronary arteries.
    1. Ong P., Athanasiadis A., Borgulya G., Mahrholdt H., Kaski J.C., Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The acova study (abnormal coronary vasomotion in patients with stable angina and unobstructed coronary arteries) J. Am. Coll. Cardiol. 2012;59:655–662.

Source: PubMed

3
Sottoscrivi