Effect of atorvastatin on C-reactive protein and benefits for cardiovascular disease in patients with type 2 diabetes: analyses from the Collaborative Atorvastatin Diabetes Trial

Sabita S Soedamah-Muthu, Shona J Livingstone, Valentine Charlton-Menys, D John Betteridge, Graham A Hitman, H Andrew W Neil, Weihang Bao, David A DeMicco, Gregory M Preston, John H Fuller, Coen D A Stehouwer, Casper G Schalkwijk, Paul N Durrington, Helen M Colhoun, CARDS Investigators, Sabita S Soedamah-Muthu, Shona J Livingstone, Valentine Charlton-Menys, D John Betteridge, Graham A Hitman, H Andrew W Neil, Weihang Bao, David A DeMicco, Gregory M Preston, John H Fuller, Coen D A Stehouwer, Casper G Schalkwijk, Paul N Durrington, Helen M Colhoun, CARDS Investigators

Abstract

Aims/hypothesis: We investigated whether atorvastatin 10 mg daily lowered C-reactive protein (CRP) and whether the effects of atorvastatin on cardiovascular disease (CVD) varied by achieved levels of CRP and LDL-cholesterol.

Methods: CRP levels were measured at baseline and 1 year after randomisation to atorvastatin in 2,322 patients with type 2 diabetes (40-75 years, 69% males) in a secondary analysis of the Collaborative Atorvastatin Diabetes Study, a randomised placebo-controlled trial. We used Cox regression models to test the effects on subsequent CVD events (n = 147) of CRP and LDL-cholesterol lowering at 1 year.

Results: After 1 year, the atorvastatin arm showed a net CRP lowering of 32% (95% CI -40%, -22%) compared with placebo. The CRP response was highly variable, with 45% of those on atorvastatin having no decrease in CRP (median [interquartile range, IQR] per cent change -9.8% [-57%, 115%]). The LDL-cholesterol response was less variable, with a median (IQR) within-person per cent change of -41% (-51%, -31%). Baseline CRP did not predict CVD over 3.8 years of follow-up (HRper SD log 0.89 [95% CI 0.75, 1.06]), whereas baseline LDL-cholesterol predicted CVD (HRper SD 1.21 [95% CI 1.02, 1.44]), as did on-treatment LDL-cholesterol. There was no significant difference in the reduction in CVD by atorvastatin, with above median (HR 0.57) or below median (HR 0.52) change in CRP or change in LDL-cholesterol (HR 0.61 vs 0.50).

Conclusions/interpretation: CRP was not a strong predictor of CVD. Statin efficacy did not vary with achieved CRP despite considerable variability in CRP response. The use of CRP as an indicator of efficacy of statin therapy on CVD risk in patients with type 2 diabetes is not supported by these data. Trial registration NCT00327418.

References

    1. Colhoun HM, Betteridge DJ, Durrington, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–696. doi: 10.1016/S0140-6736(04)16895-5.
    1. Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361:2005–2016. doi: 10.1016/S0140-6736(03)12475-0.
    1. Ridker PM, Rifai N, Lowenthal SP. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation. 2001;103:1191–1193. doi: 10.1161/01.CIR.103.9.1191.
    1. Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation. 2001;103:1933–1935. doi: 10.1161/01.CIR.103.15.1933.
    1. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med. 2005;352:29–38. doi: 10.1056/NEJMoa042000.
    1. Ridker PM, Danielson E, Fonseca FA, et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373:1175–1182. doi: 10.1016/S0140-6736(09)60447-5.
    1. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1998;98:839–844. doi: 10.1161/01.CIR.98.9.839.
    1. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–28. doi: 10.1056/NEJMoa042378.
    1. Ray KK, Cannon CP, Cairns R, Morrow DA, Ridker PM, Braunwald E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2009;29:424–430. doi: 10.1161/ATVBAHA.108.181735.
    1. Morrow DA, de Lemos JA, Sabatine MS, et al. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation. 2006;114:281–288. doi: 10.1161/CIRCULATIONAHA.106.628909.
    1. Sever PS, Poulter NR, Chang CL, et al. Evaluation of C-reactive protein prior to and on-treatment as a predictor of benefit from atorvastatin: observations from the Anglo-Scandinavian Cardiac Outcomes Trial. Eur Heart J. 2012;33:486–494. doi: 10.1093/eurheartj/ehr262.
    1. Sever PS, Poulter NR, Chang CL, et al. Evaluation of C-reactive protein before and on-treatment as a predictor of benefit of atorvastatin: a cohort analysis from the Anglo-Scandinavian Cardiac Outcomes Trial lipid-lowering arm. J Am Coll Cardiol. 2013;62:717–729. doi: 10.1016/j.jacc.2013.02.098.
    1. Heart Protection Study Collaborative Group. Jonathan E, Derrick B, et al. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. Lancet. 2011;377:469–476. doi: 10.1016/S0140-6736(10)62174-5.
    1. Blumenthal RS, Ndumele CE, Martin SS. ASK NOT what CRP can do for you. J Am Coll Cardiol. 2013;62:730–731. doi: 10.1016/j.jacc.2013.01.106.
    1. Colhoun HM, Thomason MJ, Mackness MI, et al. Design of the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med. 2002;19:201–211. doi: 10.1046/j.1464-5491.2002.00643.x.
    1. Thomason MJ, Colhoun HM, Livingstone SJ, et al. Baseline characteristics in the Collaborative AtoRvastatin Diabetes Study (CARDS) in patients with type 2 diabetes. Diabet Med. 2004;21:901–905. doi: 10.1111/j.1464-5491.2004.01401.x.
    1. WHO (1985) Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser 727:1–113
    1. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889–2934. doi: 10.1016/j.jacc.2013.11.002.
    1. Reiner Z, Catapano AL, de Backer G, et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) Eur Heart J. 2011;32:1769–1818. doi: 10.1093/eurheartj/ehr158.
    1. Schulze MB, Rimm EB, Li T, Rifai N, Stampfer MJ, Hu FB. C-reactive protein and incident cardiovascular events among men with diabetes. Diabetes Care. 2004;27:889–894. doi: 10.2337/diacare.27.4.889.
    1. Soinio M, Marniemi J, Laakso M, Lehto S, Ronnemaa T. High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care. 2006;29:329–333. doi: 10.2337/diacare.29.02.06.dc05-1700.
    1. Bruno G, Fornengo P, Novelli G, et al. C-reactive protein and 5-year survival in type 2 diabetes: the Casale Monferrato Study. Diabetes. 2009;58:926–933. doi: 10.2337/db08-0900.
    1. Kengne AP, Batty GD, Hamer M, Stamatakis E, Czernichow S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four U.K. prospective cohort studies. Diabetes Care. 2012;35:396–403. doi: 10.2337/dc11-1588.
    1. Sattar N, Hingorani AD. C-reactive protein and prognosis in diabetes: getting to the heart of the matter. Diabetes. 2009;58:798–799. doi: 10.2337/db08-1788.
    1. Sakkinen P, Abbott RD, Curb JD, Rodriguez BL, Yano K, Tracy RP. C-reactive protein and myocardial infarction. J Clin Epidemiol. 2002;55:445–451. doi: 10.1016/S0895-4356(01)00502-9.
    1. Jager A, van Hinsbergh VW, Kostense PJ, et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler Thromb Vasc Biol. 1999;19:3071–3078. doi: 10.1161/01.ATV.19.12.3071.
    1. Emerging Risk Factors Collaboration group. Kaptoge S, Di Angelantonio E, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–1320. doi: 10.1056/NEJMoa1107477.
    1. Kinlay S. Low-density lipoprotein-dependent and -independent effects of cholesterol-lowering therapies on C-reactive protein: a meta-analysis. J Am Coll Cardiol. 2007;49:2003–2009. doi: 10.1016/j.jacc.2007.01.083.
    1. Ridker PM. Closing the loop on inflammation and atherothrombosis: why perform the CIRT and CANTOS trials? Trans Am Clin Climatol Assoc. 2013;124:174–190.

Source: PubMed

3
Sottoscrivi