Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a)

Harshal A Deshmukh, Helen M Colhoun, Toby Johnson, Paul M McKeigue, D John Betteridge, Paul N Durrington, John H Fuller, Shona Livingstone, Valentine Charlton-Menys, Andrew Neil, Neil Poulter, Peter Sever, Denis C Shields, Alice V Stanton, Aurobindo Chatterjee, Craig Hyde, Roberto A Calle, David A DeMicco, Stella Trompet, Iris Postmus, Ian Ford, J Wouter Jukema, Mark Caulfield, Graham A Hitman, Harshal A Deshmukh, Helen M Colhoun, Toby Johnson, Paul M McKeigue, D John Betteridge, Paul N Durrington, John H Fuller, Shona Livingstone, Valentine Charlton-Menys, Andrew Neil, Neil Poulter, Peter Sever, Denis C Shields, Alice V Stanton, Aurobindo Chatterjee, Craig Hyde, Roberto A Calle, David A DeMicco, Stella Trompet, Iris Postmus, Ian Ford, J Wouter Jukema, Mark Caulfield, Graham A Hitman

Abstract

We carried out a genome-wide association study (GWAS) of LDL-c response to statin using data from participants in the Collaborative Atorvastatin Diabetes Study (CARDS; n = 1,156), the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT; n = 895), and the observational phase of ASCOT (n = 651), all of whom were prescribed atorvastatin 10 mg. Following genome-wide imputation, we combined data from the three studies in a meta-analysis. We found associations of LDL-c response to atorvastatin that reached genome-wide significance at rs10455872 (P = 6.13 × 10(-9)) within the LPA gene and at two single nucleotide polymorphisms (SNP) within the APOE region (rs445925; P = 2.22 × 10(-16) and rs4420638; P = 1.01 × 10(-11)) that are proxies for the ε2 and ε4 variants, respectively, in APOE. The novel association with the LPA SNP was replicated in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) trial (P = 0.009). Using CARDS data, we further showed that atorvastatin therapy did not alter lipoprotein(a) [Lp(a)] and that Lp(a) levels accounted for all of the associations of SNPs in the LPA gene and the apparent LDL-c response levels. However, statin therapy had a similar effect in reducing cardiovascular disease (CVD) in patients in the top quartile for serum Lp(a) levels (HR = 0.60) compared with those in the lower three quartiles (HR = 0.66; P = 0.8 for interaction). The data emphasize that high Lp(a) levels affect the measurement of LDL-c and the clinical estimation of LDL-c response. Therefore, an apparently lower LDL-c response to statin therapy may indicate a need for measurement of Lp(a). However, statin therapy seems beneficial even in those with high Lp(a).

Trial registration: ClinicalTrials.gov NCT00327418.

Figures

Fig. 1.
Fig. 1.
Quantile-quantile plot of meta-analysis P-values for statin response. A plot of the quantiles of observed and expected distribution ofP-values against each other.
Fig. 2.
Fig. 2.
Manhattan plot of P-values from meta-analysis of all SNPs that passed stringent quality control. The Manhattan plots [also known as −log10 (P) association plots[ show the chromosomal position of SNPs exceeding the genome-wide significance threshold (P < 5 × 10−8) as indicated by the solid red line.
Fig. 3.
Fig. 3.
Regional association plot of LPA locus with statin response. Correlations between the target SNP (the SNP with the lowest P value, depicted in purple) and nearby SNPs within a 500 kb region. Ther2 values were based on the HapMap CEU population.
Fig. 7.
Fig. 7.
Regional association plot of LPA locus with Lp(a) levels in the CARDS dataset. Correlations between the target SNP (the SNP with the lowest Pvalue, depicted in purple) and nearby SNPs within a 500 kb region. Ther2 values were based on the HapMap CEU population.
Fig. 5.
Fig. 5.
Regional association plot of APOE locus with statin response. Correlations between the target SNP (the SNP with the lowest P value, depicted in purple) and nearby SNPs within a 500 kb region. Ther2 values were based on the HapMap CEU population.
Fig. 6.
Fig. 6.
Regional association plot of ALG10 locus with statin response before Lp(a) adjustments. Correlations between the target SNP (the SNP with the lowestP value, depicted in purple) and nearby SNPs within a 500 kb region. The r2 values were based on the HapMap CEU population.

References

    1. Colhoun H. M., Betteridge D. J., Durrington P. N., Hitman G. A., Neil H. A., Livingstone S. J., Thomason M. J., Mackness M. I., Charlton-Menys V., Fuller J. H. 2004. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 364: 685–696
    1. Thompson J. F., Hyde C. L., Wood L. S., Paciga S. A., Hinds D. A., Cox D. R., Hovingh G. K., Kastelein J. J. 2009. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ. Cardiovasc. Genet. 2: 173–181
    1. Barber M. J., Mangravite L. M., Hyde C. L., Chasman D. I., Smith J. D., McCarty C. A., Li X., Wilke R. A., Rieder M. J., Williams P. T., et al. 2010. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE. 5: e9763.
    1. Thompson J. F., Man M., Johnson K. J., Wood L. S., Lira M. E., Lloyd D. B., Banerjee P., Milos P. M., Myrand S. P., Paulauskis J., et al. 2005. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 5: 352–358
    1. Donnelly L. A., Palmer C. N., Whitley A. L., Lang C. C., Doney A. S., Morris A. D., Donnan P. T. 2008. Apolipoprotein E genotypes are associated with lipid-lowering responses to statin treatment in diabetes: a Go-DARTS study. Pharmacogenet. Genomics. 18: 279–287
    1. Sever P. S., Dahlof B., Poulter N. R., Wedel H., Beevers G., Caulfield M., Collins R., Kjeldsen S. E., Kristinsson A., McInnes G. T. 2003. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 361: 1149–1158
    1. Friedewald W. T., Levy R. I., Fredrickson D. S. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499–502
    1. Shepherd J., Blauw G. J., Murphy M. B., Cobbe S. M., Bollen E. L., Buckley B. M., Ford I., Jukema J. W., Hyland M., Gaw A., et al. 1999. The design of a prospective study of Pravastatin in the Elderly at Risk (PROSPER). PROSPER Study Group. PROspective Study of Pravastatin in the Elderly at Risk. Am. J. Cardiol. 84: 1192–1197
    1. Lindgren C. M., Heid I. M., Randall J. C., Lamina C., Steinthorsdottir V., Qi L., Speliotes E. K., Thorleifsson G., Willer C. J., Herrera B. M., et al. 2009. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet. 5: e1000508.
    1. Willer C. J., Speliotes E. K., Loos R. J., Li S., Lindgren C. M., Heid I. M., Berndt S. I., Elliott A. L., Jackson A. U., Lamina C., et al. 2009. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41: 25–34
    1. Patterson N., Price A. L., Reich D. 2006. Population structure and eigenanalysis. PLoS Genet. 2: e190.
    1. Trompet S., de Craen A. J., Postmus I., Ford I., Sattar N., Caslake M., Stott D. J., Buckley B. M., Sacks F., Devlin J. J., et al. 2011. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses. BMC Med. Genet. 12: 131.
    1. Marchini J., Howie B., Myers S., McVean G., Donnelly P. 2007. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39: 906–913
    1. Li Y., Willer C., Sanna S., Abecasis G. 2009. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10: 387–406
    1. Price A. L., Patterson N. J., Plenge R. M., Weinblatt M. E., Shadick N. A., Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904–909
    1. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J., et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559–575
    1. Aulchenko Y. S., Struchalin M. V., van Duijn C. M. 2010. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics. 11: 134.
    1. Kutalik Z., Johnson T., Bochud M., Mooser V., Vollenweider P., Waeber G., Waterworth D., Beckmann J. S., Bergmann S. 2011. Methods for testing association between uncertain genotypes and quantitative traits. Biostatistics. 12: 1–17
    1. Zabaneh D., Kumari M., Sandhu M., Wareham N., Wainwright N., Papamarkou T., Hopewell J., Clarke R., Li K., Palmen J., et al. 2011. Meta analysis of candidate gene variants outside the LPA locus with Lp(a) plasma levels in 14,500 participants of six white European cohorts. Atherosclerosis. 217: 447–451
    1. Smith E. N., Chen W., Kahonen M., Kettunen J., Lehtimaki T., Peltonen L., Raitakari O. T., Salem R. M., Schork N. J., Shaw M., et al. 2010. Longitudinal genome-wide association of cardiovascular disease risk factors in the Bogalusa heart study. PLoS Genet. 6: e1001094.
    1. Ken-Dror G., Talmud P. J., Humphries S. E., Drenos F. 2010. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol. Med. 16: 389–399
    1. Marcovina S. M., Koschinsky M. L., Albers J. J., Skarlatos S. 2003. Report of the National Heart, Lung, and Blood Institute Workshop on Lipoprotein(a) and Cardiovascular Disease: recent advances and future directions. Clin. Chem. 49: 1785–1796
    1. Lamon-Fava S., Marcovina S. M., Albers J. J., Kennedy H., Deluca C., White C. C., Cupples L. A., McNamara J. R., Seman L. J., Bongard V., et al. 2011. Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study. J. Lipid Res. 52: 1181–1187
    1. Erqou S., Kaptoge S., Perry P. L., Di Angelantonio E., Thompson A., White I. R., Marcovina S. M., Collins R., Thompson S. G., Danesh J. 2009. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 302: 412–423
    1. Genser B., Dias K. C., Siekmeier R., Stojakovic T., Grammer T., Maerz W. 2011. Lipoprotein (a) and risk of cardiovascular disease–a systematic review and meta analysis of prospective studies. Clin. Lab. 57: 143–156
    1. Nordestgaard B. G., Chapman M. J., Ray K., Boren J., Andreotti F., Watts G. F., Ginsberg H., Amarenco P., Catapano A., Descamps O. S., et al. 2010. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31: 2844–2853
    1. Kraft H. G., Lingenhel A., Kochl S., Hoppichler F., Kronenberg F., Abe A., Muhlberger V., Schonitzer D., Utermann G. 1996. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 16: 713–719
    1. Clarke R., Peden J. F., Hopewell J. C., Kyriakou T., Goel A., Heath S. C., Parish S., Barlera S., Franzosi M. G., Rust S., Bennett D., et al. 2009. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361: 2518–2528
    1. Lanktree M. B., Anand S. S., Yusuf S., Hegele R. A. 2010. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ. Cardiovasc. Genet. 3: 39–46
    1. Li K. M., Wilcken D. E., Dudman N. P. 1994. Effect of serum lipoprotein(a) on estimation of low-density lipoprotein cholesterol by the Friedewald formula. Clin. Chem. 40: 571–573
    1. Kronenberg F., Lingenhel A., Lhotta K., Rantner B., Kronenberg M. F., Konig P., Thiery J., Koch M., von Eckardstein A., Dieplinger H. 2004. Lipoprotein(a)- and low-density lipoprotein-derived cholesterol in nephrotic syndrome: impact on lipid-lowering therapy? Kidney Int. 66: 348–354
    1. Scanu A. M., Hinman J. 2002. Issues concerning the monitoring of statin therapy in hypercholesterolemic subjects with high plasma lipoprotein(a) levels. Lipids. 37: 439–444
    1. Ben-Zeev O., Stahnke G., Liu G., Davis R. C., Doolittle M. H. 1994. Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. J. Lipid Res. 35: 1511–1523
    1. Mangravite L. M., Medina M. W., Cui J., Pressman S., Smith J. D., Rieder M. J., Guo X., Nickerson D. A., Rotter J. I., Krauss R. M. 2010. Combined influence of LDLR and HMGCR sequence variation on lipid-lowering response to simvastatin. Arterioscler. Thromb. Vasc. Biol. 30: 1485–1492
    1. Donnelly L. A., Doney A. S., Dannfald J., Whitley A. L., Lang C. C., Morris A. D., Donnan P. T., Palmer C. N. 2008. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet. Genomics. 18: 1021–1026
    1. Iakoubova O. A., Tong C. H., Rowland C. M., Kirchgessner T. G., Young B. A., Arellano A. R., Shiffman D., Sabatine M. S., Campos H., Packard C. J., et al. 2008. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J. Am. Coll. Cardiol. 51: 435–443
    1. Becker M. L., Visser L. E., van Schaik R. H., Hofman A., Uitterlinden A. G., Stricker B. H. 2009. Common genetic variation in the ABCB1 gene is associated with the cholesterol-lowering effect of simvastatin in males. Pharmacogenomics. 10: 1743–1751

Source: PubMed

3
Sottoscrivi