Thyroid Nodule Characterization: How to Assess the Malignancy Risk. Update of the Literature

Daniele Fresilli, Emanuele David, Patrizia Pacini, Giovanni Del Gaudio, Vincenzo Dolcetti, Giuseppe Tiziano Lucarelli, Nicola Di Leo, Maria Irene Bellini, Vito D'Andrea, Salvatore Sorrenti, Domenico Mascagni, Marco Biffoni, Cosimo Durante, Giorgio Grani, Giuseppe De Vincentis, Vito Cantisani, Daniele Fresilli, Emanuele David, Patrizia Pacini, Giovanni Del Gaudio, Vincenzo Dolcetti, Giuseppe Tiziano Lucarelli, Nicola Di Leo, Maria Irene Bellini, Vito D'Andrea, Salvatore Sorrenti, Domenico Mascagni, Marco Biffoni, Cosimo Durante, Giorgio Grani, Giuseppe De Vincentis, Vito Cantisani

Abstract

Ultrasound (US) is the first imaging modality for thyroid parenchyma evaluation. In the last decades, the role of ultrasound has been improved with the introduction of new US software, such as contrast-enhanced ultrasound (CEUS) and US-elastography (USE). USE is nowadays recognized as an essential part of the multiparametric ultrasound (MPUS) examination, in particular for the indeterminate thyroid nodule with possible fine-needle aspiration cytology (FNAC) number reduction; even if further and larger studies are needed to validate it. More controversial is the role of CEUS in thyroid evaluation, due to its high variability in sensitivity and specificity. Semi-automatic US systems based on the computer-aided diagnosis (CAD) system are producing interesting results, especially as an aid to less experienced operators. New knowledge on the molecular mechanisms involved in thyroid cancer is allowing practitioners to identify new genomic thyroid markers that could reduce the number of "diagnostic" thyroidectomies. We have therefore drawn up an updated representation of the current evidence in the literature for thyroid nodule multiparametric ultrasound (MPUS) evaluation with particular regard to USE, the US CAD system and CEUS.

Keywords: CEUS; MPUS; US-elastography; thyroid nodule; ultrasound.

Conflict of interest statement

Cantisani reports a lecturer fee from Bracco, Samsung and Toshiba. The other authors have no other conflicts of interest to declare.

Figures

Figure 1
Figure 1
(a). At B-mode Ultrasound (US), the lesion appeared round-shaped, hypoechoic with irregular margins (EU-TIRADS 5). (b). At color–Doppler US evaluation, the lesion showed no internal or peripheral vascularization (pattern I). (c). At US-Elastography (USE) evaluation, the lesion appeared stiff (ECI: 4.03). (d). At S-Detect evaluation, the lesion suggested intermediate suspicion of malignancy (TIRADS 4). Finally at histology it was identified as a papillary carcinoma.
Figure 1
Figure 1
(a). At B-mode Ultrasound (US), the lesion appeared round-shaped, hypoechoic with irregular margins (EU-TIRADS 5). (b). At color–Doppler US evaluation, the lesion showed no internal or peripheral vascularization (pattern I). (c). At US-Elastography (USE) evaluation, the lesion appeared stiff (ECI: 4.03). (d). At S-Detect evaluation, the lesion suggested intermediate suspicion of malignancy (TIRADS 4). Finally at histology it was identified as a papillary carcinoma.
Figure 2
Figure 2
(a). At B-mode Ultrasound (US), an oval-shaped nodule with mixed ecostructure, some internal fluid areas and smooth margins, was identified (EU-TIRADS 3). (b). At color–Doppler US evaluation, the lesion appeared with internal and peripheral vascularization (pattern III). (c). At Strain Ratio Elastography (SRE) evaluation, the lesion appeared soft (SR 1.13). (d). At Shear Wave Elastography (SWE) evaluation, the lesion appeared soft (2.24 m/s). (e). At CEUS evaluation, the lesion appeared solid and richly vascularized, similar to the surrounding thyroid parenchyma without wash-out. At histology, the lesion was confirmed to be a follicular hyperplasia.
Figure 2
Figure 2
(a). At B-mode Ultrasound (US), an oval-shaped nodule with mixed ecostructure, some internal fluid areas and smooth margins, was identified (EU-TIRADS 3). (b). At color–Doppler US evaluation, the lesion appeared with internal and peripheral vascularization (pattern III). (c). At Strain Ratio Elastography (SRE) evaluation, the lesion appeared soft (SR 1.13). (d). At Shear Wave Elastography (SWE) evaluation, the lesion appeared soft (2.24 m/s). (e). At CEUS evaluation, the lesion appeared solid and richly vascularized, similar to the surrounding thyroid parenchyma without wash-out. At histology, the lesion was confirmed to be a follicular hyperplasia.
Figure 2
Figure 2
(a). At B-mode Ultrasound (US), an oval-shaped nodule with mixed ecostructure, some internal fluid areas and smooth margins, was identified (EU-TIRADS 3). (b). At color–Doppler US evaluation, the lesion appeared with internal and peripheral vascularization (pattern III). (c). At Strain Ratio Elastography (SRE) evaluation, the lesion appeared soft (SR 1.13). (d). At Shear Wave Elastography (SWE) evaluation, the lesion appeared soft (2.24 m/s). (e). At CEUS evaluation, the lesion appeared solid and richly vascularized, similar to the surrounding thyroid parenchyma without wash-out. At histology, the lesion was confirmed to be a follicular hyperplasia.

References

    1. Carling T., Udelsman R. Thyroid Cancer. Annu. Rev. Med. 2014;65:125–137. doi: 10.1146/annurev-med-061512-105739.
    1. Cabanillas E.M., McFadden D.G., Durante C. Thyroid cancer. Lancet. 2016;388:2783–2795. doi: 10.1016/S0140-6736(16)30172-6.
    1. Tan G.H., Gharib H. Thyroid Incidentalomas: Management Approaches to Nonpalpable Nodules Discovered Incidentally on Thyroid Imaging. Ann. Intern. Med. 1997;126:226–231. doi: 10.7326/0003-4819-126-3-199702010-00009.
    1. Guth S., Theune U., Aberle J., Galach A., Bamberger C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009;39:699–706. doi: 10.1111/j.1365-2362.2009.02162.x.
    1. Vander J.B., Gaston E.A., Dawber T.R. The Significance of Nontoxic Thyroid Nodules: Final report of a 15-year study of the inci-dence of thyroid malignancy. Ann. Intern. Med. 1968;69:537–540. doi: 10.7326/0003-4819-69-3-537.
    1. Tunbridge W.M.G., Evered D.C., Hall R., Appleton D., Brewis M., Clark F., Evans J.G., Young E., Bird T., Smith P.A. The spectrum of thyroid disease in a community: The whickham survey. Clin. Endocrinol. 1977;7:481–493. doi: 10.1111/j.1365-2265.1977.tb01340.x.
    1. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020.
    1. Russ G., Bonnema S.J., Erdogan M.F., Durante C., Ngu R., Leenhardt L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid. J. 2017;6:225–237. doi: 10.1159/000478927.
    1. Rago T., Cantisani V., Ianni F., Chiovato L., Garberoglio R., Durante C., Frasoldati A., Spiezia S., Farina R., Vallone G., et al. Thyroid ultrasonography reporting: Consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound Chapter of Italian Society of Medical Radiology (SIRM) J. Endocrinol. Investig. 2018;41:1435–1443. doi: 10.1007/s40618-018-0935-8.
    1. Tee Y.Y., Lowe A., Brand C.A., Judson R.T. Fine-Needle Aspiration May Miss a Third of All Malignancy in Palpable Thyroid Nodules. Ann. Surg. 2007;246:714–720. doi: 10.1097/SLA.0b013e3180f61adc.
    1. Oertel Y.C., Miyahara-Felipe L., Mendoza M.G., Yu K. Value of Repeated Fine Needle Aspirations of the Thyroid: An Analysis of Over Ten Thousand FNAs. Thyroid. 2007;17:1061–1066. doi: 10.1089/thy.2007.0159.
    1. Grani G., Calvanese A., Carbotta G., D’Alessandri M., Nesca A., Bianchini M., Del Sordo M., Fumarola A. Intrinsic factors affecting adequacy of thyroid nodule fine-needle aspiration cytology. Clin. Endocrinol. 2012;78:141–144. doi: 10.1111/j.1365-2265.2012.04507.x.
    1. Grani G., Lamartina L., Ascoli V., Bosco D., Nardi F., D’Ambrosio F., Rubini A., Giacomelli L., Biffoni M., Filetti S., et al. Ultrasonography scoring systems can rule out malignancy in cytologically indeterminate thyroid nodules. Endocrine. 2017;57:256–261. doi: 10.1007/s12020-016-1148-6.
    1. He Y.-P., Xu H.-X., Zhao C.-K., Sun L.-P., Li X.-L., Yue W.-W., Guo L.-H., Wang D., Ren W.-W., Wang Q., et al. Cytologically indeterminate thyroid nodules: Increased diagnostic performance with combination of US TI-RADS and a new scoring system. Sci. Rep. 2017;7:6906. doi: 10.1038/s41598-017-07353-y.
    1. Alexander E.K., Kennedy G.C., Baloch Z.W., Cibas E.S., Chudova D., Diggans J., Friedman L., Kloos R.T., Livolsi V.A., Mandel S.J., et al. Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology. N. Engl. J. Med. 2012;367:705–715. doi: 10.1056/NEJMoa1203208.
    1. Pacini F., Basolo F., Bellantone R., Boni G., Cannizzaro M.A., De Palma M., Durante C., Elisei R., Fadda G., Frasoldati A., et al. Italian consensus on diagnosis and treatment of differentiated thyroid cancer: Joint statements of six Italian societies. J. Endocrinol. Investig. 2018;41:849–876. doi: 10.1007/s40618-018-0884-2.
    1. Kwak J.Y., Han K., Yoon J.H., Moon H.J., Son E.J., Park S.H., Jung H.K., Choi J.S., Kim B.M., Kim E.-K. Thyroid Imaging Reporting and Data System for US Features of Nodules: A Step in Establishing Better Stratification of Cancer Risk. Radiolology. 2011;260:892–899. doi: 10.1148/radiol.11110206.
    1. Sidhu P., Cantisani V., Dietrich C.F., Gilja O.H., Saftoiu A., Bartels E., Bertolotto M., Calliada F., Clevert D.A., Cosgrove D., et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Long Version) Ultraschall Med. Eur. J. Ultrasound. 2018;39:e2–e44. doi: 10.1055/a-0586-1107.
    1. Săftoiu A., Gilja O.H., Sidhu P., Dietrich C.F., Cantisani V., Amy D., Bachmann-Nielsen M., Bob F., Bojunga J., Brock M., et al. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update. Ultraschall Med. Eur. J. Ultrasound. 2019;40:425–453. doi: 10.1055/a-0838-9937.
    1. Tessler F.N., Middleton W.D., Grant E.G., Hoang J.K., Berland L.L., Teefey S.A., Cronan J.J., Beland M.D., Desser T.S., Frates M.C., et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017;14:587–595. doi: 10.1016/j.jacr.2017.01.046.
    1. Cosgrove D., Piscaglia F., Bamber J., Bojunga J., Correas J.-M., Gilja O.H., Klauser A., Sporea I., Calliada F., Cantisani V., et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography.Part 2: Clinical Applications. Ultraschall Med. Eur. J. Ultrasound. 2013;34:238–253. doi: 10.1055/s-0033-1335375.
    1. Cantisani V., David E., Grazhdani H., Rubini A., Radzina M., Dietrich C.F., Durante C., Lamartina L., Grani G., Valeria A., et al. Prospective Evaluation of Semiquantitative Strain Ratio and Quantitative 2D Ultrasound Shear Wave Elastography (SWE) in Association with TIRADS Classification for Thyroid Nodule Characterization. Ultraschall Med. Eur. J. Ultrasound. 2019;40:495–503. doi: 10.1055/a-0853-1821.
    1. Ramundo V., Di Gioia C.R.T., Falcone R., Lamartina L., Biffoni M., Giacomelli L., Filetti S., Durante C., Grani G. Diagnostic Performance of Neck Ultrasonography in the Preoperative Evaluation for Extrathyroidal Extension of Suspicious Thyroid Nodules. World J. Surg. 2020;44:2669–2674. doi: 10.1007/s00268-020-05482-6.
    1. Radzina M., Cantisani V., Rauda M., Nielsen M.B., Ewertsen C., D’Ambrosio F., Prieditis P., Sorrenti S. Update on the role of ultrasound guided radiofrequency ablation for thyroid nodule treatment. Int. J. Surg. 2017;41:S82–S93. doi: 10.1016/j.ijsu.2017.02.010.
    1. Papini E., Pacella C.M., Solbiati L.A., Achille G., Barbaro D., Bernardi S., Cantisani V., Cesareo R., Chiti A., Cozzaglio L., et al. Minimally-invasive treatments for benign thyroid nodules: A Delphi-based consensus statement from the Italian minimally-invasive treatments of the thyroid (MITT) group. Int. J. Hyperth. 2019;36:375–381. doi: 10.1080/02656736.2019.1575482.
    1. Trimboli P., Durante C. Ultrasound risk stratification systems for thyroid nodule: Between lights and shadows, we are moving towards a new era. Endocrine. 2020;69:1–4. doi: 10.1007/s12020-020-02196-6.
    1. Castellana M., Grani G., Radzina M., Guerra V., Giovanella L., Deandrea M., Ngu R., Durante C., Trimboli P. Performance of EU-TIRADS in malignancy risk stratification of thyroid nodules: A meta-analysis. Eur. J. Endocrinol. 2020;183:255–264. doi: 10.1530/EJE-20-0204.
    1. Grani G., Lamartina L., Ramundo V., Falcone R., Lomonaco C., Ciotti L., Barone M., Maranghi M., Cantisani V., Filetti S., et al. Taller-Than-Wide Shape: A New Definition Improves the Specificity of TIRADS Systems. Eur. Thyroid. J. 2020;9:85–91. doi: 10.1159/000504219.
    1. Grani G., Lamartina L., Ascoli V., Bosco D., Biffoni M., Giacomelli L., Maranghi M., Falcone R., Ramundo V., Cantisani V., et al. Reducing the Number of Unnecessary Thyroid Biopsies While Improving Diagnostic Accuracy: Toward the “Right” TIRADS. J. Clin. Endocrinol. Metab. 2019;104:95–102. doi: 10.1210/jc.2018-01674.
    1. Li W., Wang Y., Wen J., Zhang L., Sun Y. Diagnostic Performance of American College of Radiology TI-RADS: A Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2021;216:38–47. doi: 10.2214/AJR.19.22691.
    1. Negro R., Attanasio R., Grimaldi F., Frasoldati A., Guglielmi R., Papini E. A 2016 Italian Survey about Guidelines and Clinical Management of Thyroid Nodules. Eur. Thyroid. J. 2016;6:75–81. doi: 10.1159/000453032.
    1. Mauri G., Gitto S., Cantisani V., Vallone G., Schiavone C., Papini E., Sconfienza L.M. Use of the Thyroid Imaging Reporting and Data System (TIRADS) in clinical practice: An Italian survey. Endocrine. 2020;68:329–335. doi: 10.1007/s12020-020-02199-3.
    1. Moon H.J., Kwak J.Y., Kim M.J., Son E.J., Kim E.-K. Can Vascularity at Power Doppler US Help Predict Thyroid Malignancy? Radiolology. 2010;255:260–269. doi: 10.1148/radiol.09091284.
    1. Cantisani V., Catania A., De Antoni E., Greco R., Caruso R., Di Segni M., Medvedyeva E., Maldur V., Guerrisi I., Kyriacou K.A., et al. Is pattern III as evidenced by US color-Doppler useful in predicting thyroid nodule malignancy? Large-scale retrospective analysis. La Clin. Ter. 2010;161:20499019.
    1. Frates M.C., Benson C.B., Doubilet P.M., Cibas E.S., Marqusee E. Can Color Doppler Sonography Aid in the Prediction of Malignancy of Thyroid Nodules? J. Ultrasound Med. 2003;22:127–131. doi: 10.7863/jum.2003.22.2.127.
    1. Dighe M., Barr R., Bojunga J., Cantisani V., Chammas M.C., Cosgrove D., Cui X.W., Dong Y., Fenner F., Radzina M., et al. Thyroid Ultrasound: State of the Art. Part 2—Focal Thyroid Lesions. Med. Ultrason. 2017;19:195–210. doi: 10.11152/mu-999.
    1. Moss W.J., Finegersh A., Pang J., Califano J.A., Coffey C., Orosco R.K., Brumund K.T. Needle Biopsy of Routine Thyroid Nodules Should Be Performed Using a Capillary Action Technique with 24- to 27-Gauge Needles: A Systematic Review and Meta-Analysis. Thyroid. 2018;28:857–863. doi: 10.1089/thy.2017.0643.
    1. Cooper D.S., Doherty G.M., Haugen B.R., Kloos R.T., Lee S.L., Mandel S.J., Mazzaferri E.L., McIver B., Pacini F., Schlumberger M. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–1214. doi: 10.1089/thy.2009.0110.
    1. Gharib H., Papini E., Paschke R., Duick D.S., Valcavi R., Hegedüs L., Vitti P. AACE/AME/ETA Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: Executive summary of recom-mendations. J. Endocrinol. Investig. 2010;33:51.
    1. Feldkamp J., Führer D., Luster M., Musholt T.J., Spitzweg C., Schott M. Fine Needle Aspiration in the Investigation of Thyroid Nodules. Dtsch. Ärzteblatt Int. 2016;113:353–359. doi: 10.3238/arztebl.2016.0353.
    1. Iannuccilli J.D., Cronan J.J., Monchik J.M. Risk for Malignancy of Thyroid Nodules as Assessed by Sonographic Criteria: The need for biopsy. J. Ultrasound Med. 2004;23:1455–1464. doi: 10.7863/jum.2004.23.11.1455.
    1. Wienke J.R., Chong W.K., Fielding J.R., Zou K.H., Mittelstaedt C.A. Sonographic Features of Benign Thyroid Nodules: Interobserver reliability and overlap with malignancy. J. Ultrasound Med. 2003;22:1027–1031. doi: 10.7863/jum.2003.22.10.1027.
    1. Cantisani V., Consorti F., Guerrisi A., Guerrisi I., Ricci P., Di Segni M., Mancuso E., Scardella L., Milazzo F., D’Ambrosio F., et al. Prospective comparative evaluation of quantitative-elastosonography (Q-elastography) and contrast-enhanced ultrasound for the evaluation of thyroid nodules: Preliminary experience. Eur. J. Radiol. 2013;82:1892–1898. doi: 10.1016/j.ejrad.2013.07.005.
    1. Hong Y., Son E.J., Kim E.-K., Kwak J.Y., Hong S., Chang H.-S. Positive predictive values of sonographic features of solid thyroid nodule. Clin. Imaging. 2010;34:127–133. doi: 10.1016/j.clinimag.2008.10.034.
    1. Cantisani V., Lodise P., Di Rocco G., Grazhdani H., Giannotti D., Patrizi G., Medvedyeva E., Olive M., Fioravanti C., Giacomelli L., et al. Diagnostic Accuracy and Interobserver Agreement of Quasistatic Ultrasound Elastography in the Diagnosis of Thyroid Nodules. Ultraschall Med. Eur. J. Ultrasound. 2014;36:162–167. doi: 10.1055/s-0034-1366467.
    1. Cantisani V., Grazhdani H., Ricci P., Mortele K., Di Segni M., D’Andrea V., Redler A., Di Rocco G., Giacomelli L., Maggini E., et al. Q-Elastosonography of Solid Thyroid Nodules: Assessment of Diagnostic Efficacy and Interobserver Variability in a Large Patient Cohort. Eur. Radiol. 2013;24:143–150. doi: 10.1007/s00330-013-2991-y.
    1. Cosgrove D., Barr R., Bojunga J., Cantisani V., Chammas M.C., Dighe M., Vinayak S., Xu J.-M., Dietrich C.F. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part Thyroid. Ultrasound Med. Biol. 2017;43:4–26. doi: 10.1016/j.ultrasmedbio.2016.06.022.
    1. Bamber J., Cosgrove D., Dietrich C.F., Fromageau J., Bojunga J., Calliada F., Cantisani V., Correas J.-M., D’Onofrio M., Drakonaki E.E., et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography. Part 1: Basic Principles and Technology. Ultraschall Med. Eur. J. Ultrasound. 2013;34:169–184. doi: 10.1055/s-0033-1335205.
    1. Celletti I., Fresilli D., De Vito C., Bononi M., Cardaccio S., Cozzolino A., Durante C., Grani G., Grimaldi G., Isidori A.M., et al. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? La Radiol. Med. 2021 doi: 10.1007/s11547-021-01349-5. Online ahead of print.
    1. Cantisani V., Lodise P., Grazhdani H., Mancuso E., Maggini E., Di Rocco G., D’Ambrosio F., Calliada F., Redler A., Ricci P., et al. Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur. J. Radiol. 2014;83:420–428. doi: 10.1016/j.ejrad.2013.05.008.
    1. Cantisani V., D’Ambrosio F., Nielsen M.B. Multiparametric Ultrasound of Thyroid Nodules: Where Do We Stand? Ultraschall Med. Eur. J. Ultrasound. 2017;38:357–359. doi: 10.1055/s-0043-111682.
    1. Swan K.Z., Nielsen V.E., Bonnema S.J. Evaluation of thyroid nodules by shear wave elastography: A review of current knowledge. J. Endocrinol. Investig. 2021 doi: 10.1007/s40618-021-01570-z. Online ahead of print.
    1. Nell S., Kist J.W., Debray T.P., De Keizer B., van Oostenbrugge T.J., Borel R., Valk G.D., Vriens M.R. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur. J. Radiol. 2015;84:652–661. doi: 10.1016/j.ejrad.2015.01.003.
    1. Ghajarzadeh M., Sodagari F., Shakiba M. Diagnostic Accuracy of Sonoelastography in Detecting Malignant Thyroid Nodules: A Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2014;202:W379–W389. doi: 10.2214/AJR.12.9785.
    1. Tian W., Hao S., Gao B., Jiang Y., Zhang S., Guo L., Luo D. Comparison of Diagnostic Accuracy of Real-Time Elastography and Shear Wave Elastography in Differentiation Malignant From Benign Thyroid Nodules. Medicine. 2015;94:e2312. doi: 10.1097/MD.0000000000002312.
    1. Sun J., Cai J., Wang X. Real-time Ultrasound Elastography for Differentiation of Benign and Malignant Thyroid Nodules: A meta-analysis. J. Ultrasound Med. 2014;33:495–502. doi: 10.7863/ultra.33.3.495.
    1. Razavi S.A., Hadduck T.A., Sadigh G., Dwamena B.A. Comparative Effectiveness of Elastographic and B-Mode Ultrasound Criteria for Diagnostic Discrimination of Thyroid Nodules: A Meta-Analysis. Am. J. Roentgenol. 2013;200:1317–1326. doi: 10.2214/AJR.12.9215.
    1. Zhan J., Jin J.-M., Diao X.-H., Chen Y. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules—A meta-analysis. Eur. J. Radiol. 2015;84:2181–2186. doi: 10.1016/j.ejrad.2015.07.015.
    1. Chang N., Zhang X., Wan W., Zhang C., Zhang X. The Preciseness in Diagnosing Thyroid Malignant Nodules Using Shear-Wave Elastography. Med. Sci. Monit. 2018;24:671–677. doi: 10.12659/MSM.904703.
    1. Filho R.H.C., Pereira F.L., Iared W. Diagnostic Accuracy Evaluation of Two-Dimensional Shear Wave Elastography in the Differentiation Between Benign and Malignant Thyroid Nodules: Systematic Review and Meta-analysis. J. Ultrasound Med. 2020;39:1729–1741. doi: 10.1002/jum.15271.
    1. Hu X., Liu Y., Qian L. Diagnostic potential of real-time elastography (RTE) and shear wave elastography (SWE) to differentiate benign and malignant thyroid nodules. Medicine. 2017;96:e8282. doi: 10.1097/MD.0000000000008282.
    1. Trimboli P., Castellana M., Virili C., Havre R.F., Bini F., Marinozzi F., D’Ambrosio F., Giorgino F., Giovanella L., Prosch H., et al. Performance of contrast-enhanced ultrasound (CEUS) in assessing thyroid nodules: A systematic review and meta-analysis using histological standard of reference. La Radiol. Medica. 2020;125:406–415. doi: 10.1007/s11547-019-01129-2.
    1. Liu Q., Cheng J., Li J., Gao X., Li H. The diagnostic accuracy of contrast-enhanced ultrasound for the differentiation of benign and malignant thyroid nodules: A PRISMA compliant meta-analysis. Medicine(Baltimore) 2018;97:e13325. doi: 10.1097/MD.0000000000013325.
    1. Zhang J., Zhang X., Meng Y., Chen Y. Contrast-enhanced ultrasound for the differential diagnosis of thyroid nodules: An updated meta-analysis with comprehensive heterogeneity analysis. PLoS ONE. 2020;15:e0231775. doi: 10.1371/journal.pone.0231775.
    1. Trimboli P., Dietrich C.F., David E., Mastroeni G., Ventura S.O., Sidhu P.S., Letizia C., Messineo D., D’ambrosio F., Radzina M., et al. Ultrasound and ultrasound-related techniques in endocrine diseases. Minerva Endocrinol. 2018;43:333–340. doi: 10.23736/S0391-1977.17.02728-6.
    1. Bongiovanni M., Spitale A., Faquin W.C., Mazzucchelli L., Baloch Z.W. The Bethesda System for Reporting Thyroid Cytopathology: A Meta-Analysis. Acta Cytol. 2012;56:333–339. doi: 10.1159/000339959.
    1. Nardi F., Basolo F., Crescenzi A., Fadda G., Frasoldati A., Orlandi F., Palombini L., Papini E., Zini M., Pontecorvi A., et al. Italian consensus for the classification and reporting of thyroid cytology. J. Endocrinol. Investig. 2014;37:593–599. doi: 10.1007/s40618-014-0062-0.
    1. Cantisani V., Ulisse S., Guaitoli E., DE Vito C., Caruso R., Mocini R., D’Andrea V., Ascoli V., Antonaci A., Catalano C., et al. Q-Elastography in the Presurgical Diagnosis of Thyroid Nodules with Indeterminate Cytology. PLoS ONE. 2012;7:e50725. doi: 10.1371/journal.pone.0050725.
    1. Qiu Y., Xing Z., Liu J., Peng Y., Zhu J., Su A. Diagnostic reliability of elastography in thyroid nodules reported as indeterminate at prior fine-needle aspiration cytology (FNAC): A systematic review and Bayesian meta-analysis. Eur. Radiol. 2020;30:6624–6634. doi: 10.1007/s00330-020-07023-0.
    1. Samir A.E., Dhyani M., Anvari A., Prescott J., Halpern E.F., Faquin W.C., Stephen A. Shear-Wave Elastography for the Preoperative Risk Stratification of Follicular-patterned Lesions of the Thyroid: Diagnostic Accuracy and Optimal Measurement Plane. Radiolology. 2015;277:565–573. doi: 10.1148/radiol.2015141627.
    1. Bardet S., Ciappuccini R., Pellot-Barakat C., Monpeyssen H., Michels J.-J., Tissier F., Blanchard D., Menegaux F., De Raucourt D., Lefort M., et al. Shear Wave Elastography in Thyroid Nodules with Indeterminate Cytology: Results of a Prospective Bicentric Study. Thyroid. 2017;27:1441–1449. doi: 10.1089/thy.2017.0293.
    1. Gharib H., Papini E., Garber J.R., Duick D.S., Harrell R.M., Hegedus L., Paschke R., Valcavi R., Vitti P. American association of clinical endocrinologists, american college of endocrinology, and associazione medici endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules-2016 update executive summary of recommendations. Endocr. Pr. 2016;22:1–60. doi: 10.4158/.
    1. Shin J.H., Baek J.H., Chung J., Ha E.J., Kim J.-H., Lee Y.H., Lim H.K., Moon W.-J., Na D.G., Park J.S., et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016;17:370–395. doi: 10.3348/kjr.2016.17.3.370.
    1. Grani G., Lamartina L., Cantisani V., Maranghi M., Lucia P., Durante C. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr. Connect. 2018;7:1–7. doi: 10.1530/EC-17-0336.
    1. Chang Y., Paul A.K., Kim N., Baek J.H., Choi Y.J., Ha E.J., Lee K.D., Lee H.S., Shin D., Kim N. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments. Med. Phys. 2016;43:554–567. doi: 10.1118/1.4939060.
    1. Choi Y.J., Baek J.H., Park H.S., Shim W.H., Kim T.Y., Shong Y.K., Lee J.H. A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment. Thyroid. 2017;27:546–552. doi: 10.1089/thy.2016.0372.
    1. Di Segni M., de Soccio V., Cantisani V., Bonito G., Rubini A., Di Segni G., Lamorte S., Magri V., DE Vito C., Migliara G., et al. Automated classification of focal breast lesions according to S-detect: Validation and role as a clinical and teaching tool. J. Ultrasound. 2018;21:105–118. doi: 10.1007/s40477-018-0297-2.
    1. Gitto S., Grassi G., De Angelis C., Monaco C.G., Sdao S., Sardanelli F., Sconfienza L.M., Mauri G. A computer-aided diagnosis system for the assessment and characterization of low-to-high suspicion thyroid nodules on ultrasound. La Radiol. Medica. 2018;124:118–125. doi: 10.1007/s11547-018-0942-z.
    1. Fresilli D., Grani G., De Pascali M.L., Alagna G., Tassone E., Ramundo V., Ascoli V., Bosco D., Biffoni M., Bononi M., et al. Computer-aided diagnostic system for thyroid nodule sonographic evaluation outperforms the specificity of less experienced examiners. J. Ultrasound. 2020;23:169–174. doi: 10.1007/s40477-020-00453-y.
    1. Xu L., Gao J., Wang Q., Yin J., Yu P., Bai B., Pei R., Chen D., Yang G., Wang S., et al. Computer-Aided Diagnosis Systems in Diagnosing Malignant Thyroid Nodules on Ultrasonography: A Systematic Review and Meta-Analysis. Eur. Thyroid. J. 2020;9:186–193. doi: 10.1159/000504390.
    1. Zhao W.-J., Fu L.-R., Huang Z.-M., Zhu J.-Q., Ma B.-Y. Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound. Medicine. 2019;98:e16379. doi: 10.1097/MD.0000000000016379.
    1. Prete A., De Souza P.B., Censi S., Muzza M., Nucci N., Sponziello M. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020;11:102. doi: 10.3389/fendo.2020.00102.
    1. Miricescu D., Diaconu C.C., Stefani C., Stanescu A.M.A., Totan A., Rusu I.R., Bratu O.G., Spinu D., Greabu M. The Serine/Threonine Protein Kinase (Akt)/Protein Kinase B (PkB) Signaling Pathway in Breast Cancer. J. Mind Med. Sci. 2020;7:34–39. doi: 10.22543/7674.71.P3439.
    1. Grani G., Sponziello M., Pecce V., Ramundo V., Durante C. Contemporary Thyroid Nodule Evaluation and Management. J. Clin. Endocrinol. Metab. 2020;105:2869–2883. doi: 10.1210/clinem/dgaa322.
    1. Steward D.L., Carty S.E., Sippel R.S., Yang S.P., Sosa J.A., Sipos J.A., Figge J.J., Mandel S., Haugen B.R., Burman K.D., et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules With Indeterminate Cytology: A Prospective Blinded Multicenter Study. JAMA Oncol. 2019;5:204–212. doi: 10.1001/jamaoncol.2018.4616.
    1. Patel K.N., Angell T.E., Babiarz J., Barth N.M., Blevins T., Duh Q.-Y., Ghossein R.A., Harrell R.M., Huang J., Kennedy G.C., et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018;153:817–824. doi: 10.1001/jamasurg.2018.1153.
    1. Livhits M.J., Zhu C.Y., Kuo E.J., Nguyen D.T., Kim J., Tseng C.-H., Leung A.M., Rao J., Levin M., Douek M.L., et al. Effectiveness of Molecular Testing Techniques for Diagnosis of Indeterminate Thyroid Nodules: A Randomized Clinical Trial. JAMA Oncol. 2021;7:70. doi: 10.1001/jamaoncol.2020.5935.
    1. Celano M., Rosignolo F., Maggisano V., Pecce V., Iannone M., Russo D., Bulotta S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int. J. Genom. 2017;2017:6496570. doi: 10.1155/2017/6496570.
    1. Lupo M.A., Walts A.E., Sistrunk J.W., Giordano T.J., Sadow P.M., Massoll N., Campbell R., Jackson S.A., Toney N., Narick C.M., et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn. Cytopathol. 2020;48:1254–1264. doi: 10.1002/dc.24564.
    1. Sponziello M., Brunelli C., Verrienti A., Grani G., Pecce V., Abballe L., Ramundo V., Damante G., Russo D., Lombardi C.P., et al. Performance of a dual-component molecular assay in cytologically indeterminate thyroid nodules. Endocrine. 2020;68:458–465. doi: 10.1007/s12020-020-02271-y.
    1. Possieri C., Locantore P., Salis C., Bacci L., Aiello A., Fadda G., De Crea C., Raffaelli M., Bellantone R., Grassi C., et al. Combined molecular and mathematical analysis of long noncoding RNAs expression in fine needle aspiration biopsies as novel tool for early diagnosis of thyroid cancer. Endocrine. 2020;72:711–720. doi: 10.1007/s12020-020-02508-w.
    1. Grani G., Sponziello M., Filetti S., Durante C. Molecular analysis of fine-needle aspiration cytology in thyroid disease: Where are we? Curr. Opin. Otolaryngol. Head Neck Surg. 2021;29:107–112. doi: 10.1097/MOO.0000000000000698.
    1. Lewiński A., Adamczewski Z., Zygmunt A., Markuszewski L., Karbownik-Lewińska M., Stasiak M. Correlations between Molecular Landscape and Sonographic Image of Different Variants of Papillary Thyroid Carcinoma. J. Clin. Med. 2019;8:1916. doi: 10.3390/jcm8111916.
    1. Shangguan R., Hu Y.-P., Huang J., Yang S.-J., Ye L., Lin R.-X., Zhu J., Zhang T.-L., Ying L., Li P. Association Between BRAFV600E Mutation and the American College of Radiology Thyroid Imaging, Reporting and Data System in Solitary Papillary Thyroid Carcinoma. Acad. Radiol. 2019;26:154–160. doi: 10.1016/j.acra.2018.05.010.
    1. Liu Y., He L., Yin G., Cheng L., Zeng B., Cheng J., Yang L. Association analysis and the clinical significance of BRAF gene mutations and ultrasound features in papillary thyroid carcinoma. Oncol. Lett. 2019;18:2995–3002. doi: 10.3892/ol.2019.10641.
    1. Lin Z.-M., Yan C.-X., Song Y., Hong Y.-R., Wen Q., Xu Y.-Y., Pan M.-Q., Ye Q., Huang P.-T. The features of contrast enhanced ultrasound and BRAF V600E in papillary thyroid carcinoma. J. Thorac. Dis. 2019;11:5071–5078. doi: 10.21037/jtd.2019.11.78.
    1. Chen L., Chen L., Liu J., Nong L., Zhang H. The Association Among Quantitative Contrast-Enhanced Ultrasonography Features, Thyroid Imaging Reporting and Data System and BRAF V600E Mutation Status in Patients With Papillary Thyroid Microcarcinoma. Ultrasound Q. 2019;35:228–232. doi: 10.1097/RUQ.0000000000000406.
    1. Hahn S.Y., Kim T.H., Ki C.-S., Kim S.W., Ahn S., Shin J.H., Chung J.H. Ultrasound and clinicopathological features of papillary thyroid carcinomas with BRAF and TERT promoter mutations. Oncotarget. 2017;8:108946–108957. doi: 10.18632/oncotarget.22430.
    1. Yoon J.H., Han K., Lee E., Lee J., Kim E.-K., Moon H.J., Park V., Nam K.-H., Kwak J.Y. Radiomics in predicting mutation status for thyroid cancer: A preliminary study using radiomics features for predicting BRAFV600E mutations in papillary thyroid carcinoma. PLoS ONE. 2020;15:e0228968. doi: 10.1371/journal.pone.0228968.
    1. Zhu Y., Wu H., Huang B., Shen X., Cai G., Gu X. BRAFV600E mutation combined with American College of Radiology thyroid imaging report and data system significantly changes surgical resection rate and risk of malignancy in thyroid cytopathology practice. Gland. Surg. 2020;9:1674–1684. doi: 10.21037/gs-20-535.
    1. Suh Y.J., Choi Y.J. Strategy to reduce unnecessary surgeries in thyroid nodules with cytology of Bethesda category III (AUS/FLUS): A retrospective analysis of 667 patients diagnosed by surgery. Endocrine. 2020;69:578–586. doi: 10.1007/s12020-020-02300-w.
    1. Ya W., Ting X., Xingyue C., Xin Z., HongYan D., Jianxiang W., Xiao L., Qing Y., Xinhua Y., Meiping S., et al. BRAFV600E vs. TIRADS in predicting papillary thyroid cancers in Bethesda system I, III, and V nodules. Cancer Biol. Med. 2019;16:131–138. doi: 10.20892/j.issn.2095-3941.2018.0291.

Source: PubMed

3
Sottoscrivi