Muscles adaptation to aging and training: architectural changes - a randomised trial

Adrien J Létocart, Franck Mabesoone, Fabrice Charleux, Christian Couppé, René B Svensson, Frédéric Marin, S Peter Magnusson, Jean-François Grosset, Adrien J Létocart, Franck Mabesoone, Fabrice Charleux, Christian Couppé, René B Svensson, Frédéric Marin, S Peter Magnusson, Jean-François Grosset

Abstract

Background: To investigate how anatomical cross-sectional area and volume of quadriceps and triceps surae muscles were affected by ageing, and by resistance training in older and younger men, in vivo.

Methods: The old participants were randomly assigned to moderate (O55, n = 13) or high-load (O80, n = 14) resistance training intervention (12 weeks; 3 times/week) corresponding to 55% or 80% of one repetition maximum, respectively. Young men (Y55, n = 11) were assigned to the moderate-intensity strengthening exercise program. Each group received the exact same training volume on triceps surae and quadriceps group (Reps x Sets x Intensity). The fitting polynomial regression equations for each of anatomical cross-sectional area-muscle length curves were used to calculate muscle volume (contractile content) before and after 12 weeks using magnetic resonance imaging scans.

Results: Only Rectus femoris and medial gastrocnemius muscle showed a higher relative anatomical cross-sectional area in the young than the elderly on the proximal end. The old group displayed a higher absolute volume of non-contractile material than young men in triceps surae (+ 96%). After training, Y55, O55 and O80 showed an increase in total quadriceps (+ 4.3%; + 6.7%; 4.2% respectively) and triceps surae (+ 2.8%; + 7.5%; 4.3% respectively) volume. O55 demonstrated a greater increase on average gains compared to Y55, while no difference between O55 and O80 was observed.

Conclusions: Muscle loss with aging is region-specific for some muscles and uniform for others. Equivalent strength training volume at moderate or high intensities increased muscle volume with no differences in muscle volume gains for old men. These data suggest that physical exercise at moderate intensity (55 to 60% of one repetition maximum) can reverse the aging related loss of muscle mass.

Trial registration: NCT03079180 in ClinicalTrials.gov . Registration date: March 14, 2017.

Keywords: Ageing; Anatomical cross-sectional area; Muscle volume; Non-contractile tissue; Resistance training.

Conflict of interest statement

The author(s) declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Regression equations obtained from the muscles of the quadriceps in young (a, c, e, g) and old (b, d, f, h) groups. Values are relative to maximum anatomical cross sectional area (ACSA) and muscle length. 0% of relative length corresponds to distal end (knee proximity) and 100% corresponds to proximal end (hip proximity). a, b: Vastus Lateralis (VL), c, d: Vastus Intermedius (VI), e, f: Vastus Medialis (VM) and g, h: Rectus Femoris (RF)
Fig. 2
Fig. 2
Comparison of regression equations obtained from the muscles of the quadriceps in young (grey) and old (black) groups. Values are relative to maximum anatomical cross sectional area (ACSA) and muscle length. A: Vastus Lateralis (VL), B: Vastus Intermedius (VI), C: Vastus Medialis (VM) and D: Rectus Femoris (RF); * Significant difference between young and old (p < 0.05)
Fig. 3
Fig. 3
Regression equations obtained from the muscles of the triceps surae in young (a, c, e) and old (b, d, f) groups. Values are relative to maximum anatomical cross sectional area (ACSA) and muscle length. 0% of relative length corresponds to proximal end (knee proximity) and 100% corresponds to distal end (ankle proximity). a,b: Medial gastrocnemius (MG), c,d: Lateral gastrocnemius (LG) and e,f: Soleus (Sol)
Fig. 4
Fig. 4
Comparison of Regression equations obtained from the muscles of the triceps surae in young (grey) and old (black) groups. Values are relative to maximum anatomical cross sectional area (ACSA) and muscle length. a: Medial gastrocnemius (MG), b: Lateral gastrocnemius (LG), c: Soleus (Sol); * Significant difference between young and old (p < 0.05)
Fig. 5
Fig. 5
Quadriceps (a) and triceps surae (b) muscles volumes between old and young groups. Vastus Lateralis (VL), Vastus Intermedius (VI), Vastus Medialis (VM), Rectus Femoris (RF), Quadriceps (Quad), Medial gastrocnemius (MG), Lateral gastrocnemius (LG), Soleus (Sol), Triceps Surae (TS); * Significant difference between young and old (p < 0.05), ** (p < 0.01) and *** (p < 0.001)
Fig. 6
Fig. 6
Evolutions of mean anatomical cross sectional areas (ACSA) values relative muscle length for each muscle of quadriceps and triceps surae groups for each training group between pre (grey line) and post training (black dashed line). a,h,o: VL of Y55,O55 and O80 respectively; b,i,p: VI; c,j,q: VM; d,k,r: RF; e,l,s: MG; f,m,t: LG; g,n,u: Sol. Vastus Lateralis (VL), Vastus Intermedius (VI), Vastus Medialis (VM), Rectus Femoris (RF), Medial gastrocnemius (MG), Lateral gastrocnemius (LG), Soleus (Sol); * Significant difference between pre and post training (p < 0.05) and ** (p < 0.01)
Fig. 7
Fig. 7
Pre and post muscles volumes for quadriceps (a: Y55, C: O55, e: O80) and triceps surae (b: Y55, d: O55, f: O80) on each training groups. Vastus Lateralis (VL), Vastus Intermedius (VI), Vastus Medialis (VM), Rectus Femoris (RF), Quadriceps (Quad), Medial gastrocnemius (MG), Lateral gastrocnemius (LG), Soleus (Sol), Triceps Surae (TS); * significant difference between pre and post training (p < 0.05), ** (p < 0.01) and *** (p < 0.001)

References

    1. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol. 2003;95:1717–1727. doi: 10.1152/japplphysiol.00347.2003.
    1. Janssen I, Heymsfield SB, Wang Z, Ross R, Kung TA, Cederna PS, et al. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):81-8. 10.1152/jappl.2000.89.1.81.
    1. Candow DG, Chilibeck PD. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci. 2005;60:148–156. doi: 10.1093/gerona/60.2.148.
    1. Abe T, Sakamaki M, Yasuda T, Bemben MG, Kondo M, Kawakami Y, et al. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J Sports Sci Med. 2011;10:145–150.
    1. Ogawa M, Yasuda T, Abe T. Component characteristics of thigh muscle volume in young and older healthy men. Clin Physiol Funct Imaging. 2012;32:89–93. doi: 10.1111/j.1475-097X.2011.01057.x.
    1. Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84:1341–1349. doi: 10.1152/jappl.1998.84.4.1341.
    1. Roth SM, Ivey FM, Martel GF, Lemmer JT, Hurlbut DE, Siegel EL, et al. Muscle size responses to strength training in young and older men and women. J Am Geriatr Soc. 2001;49:1428–1433. doi: 10.1046/j.1532-5415.2001.4911233.x.
    1. Borde R, Hortobágyi T, Granacher U. Dose–Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sports Med. 2015;45:1693–1720. doi: 10.1007/s40279-015-0385-9.
    1. Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Müller S, Scharhag J. The intensity and effects of strength training in the elderly. Dtsch Ärzteblatt Int. 2011;108:359–364. doi: 10.3238/arztebl.2011.0359.
    1. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 2009;587 Pt 1:211–217. doi:10.1113/jphysiol.2008.164483.
    1. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol. 2003;95:2229–2234. doi: 10.1152/japplphysiol.00433.2003.
    1. Erskine RM, Jones DA, Williams AG, Stewart CE, Degens H. Inter-individual variability in the adaptation of human muscle specific tension to progressive resistance training. Eur J Appl Physiol. 2010;110:1117–1125. doi: 10.1007/s00421-010-1601-9.
    1. Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114:1239–1249. doi: 10.1007/s00421-014-2855-4.
    1. O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. In vivo measurements of muscle specific tension in adults and children. Exp Physiol. 2010;95:202–210. doi: 10.1113/expphysiol.2009.048967.
    1. Maden-Wilkinson TM, McPhee JS, Rittweger J, Jones DA, Degens H. Thigh muscle volume in relation to age, sex and femur volume. Age (Omaha) 2014;36:383–393. doi: 10.1007/s11357-013-9571-6.
    1. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol. 2009;107:1172–1180. doi: 10.1152/japplphysiol.00290.2009.
    1. Mathur S, Takai KP, Macintyre DL, Reid D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease. Phys Ther. 2008;88:219–230. doi: 10.2522/ptj.20070052.
    1. Akima H, Lott D, Senesac C, Deol J, Germain S, Arpan I, et al. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2012;22:16–25. doi: 10.1016/j.nmd.2011.06.750.
    1. Narici MV, Landoni L, Minetti AE. Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol Occup Physiol. 1992;65:438–444. doi: 10.1007/BF00243511.
    1. Morse CI, Thom JM, Mian OS, Muirhead A, Birch KM, Narici MV. Muscle strength, volume and activation following 12-month resistance training in 70-year-old males. Eur J Appl Physiol. 2005;95:197–204. doi: 10.1007/s00421-005-1342-3.
    1. Grosset J-F, Onambele-Pearson G. Effect of Foot and Ankle Immobilization on Leg and Thigh Muscles’ Volume and Morphology: A Case Study Using Magnetic Resonance Imaging. Anat Rec Adv Integr Anat Evol Biol. 2008;291:1673–1683. doi: 10.1002/ar.20759.
    1. Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol. 2007;100:267–274. doi: 10.1007/s00421-007-0429-4.
    1. Esformes JI, Narici MV, Maganaris CN. Measurement of human muscle volume using ultrasonography. Eur J Appl Physiol. 2002;87:90–92. doi: 10.1007/s00421-002-0592-6.
    1. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol. 2009;107:523–530. doi: 10.1152/japplphysiol.00213.2009.
    1. Carroll CC, Dickinson JM, LeMoine JK, Haus JM, Weinheimer EM, Hollon CJ, et al. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults. J Appl Physiol. 2011;111:508–515. doi: 10.1152/japplphysiol.01348.2010.
    1. Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103:1565–1575. doi: 10.1152/japplphysiol.00578.2007.
    1. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 2006;100:2048–2056. doi: 10.1152/japplphysiol.01442.2005.
    1. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol Oxford Engl. 2007;191:111–121. doi: 10.1111/j.1748-1716.2007.01714.x.
    1. Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46:153–162. doi: 10.1016/0895-4356(93)90053-4.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340 mar23 1:c332. doi: 10.1136/bmj.c332.
    1. Berg HE, Tedner B, Tesch PA. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand. 1993;148:379–385. doi: 10.1111/j.1748-1716.1993.tb09573.x.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
    1. Kubo K, Kanehisa H, Azuma K, Ishizu M, Kuno S-Y, Okada M, et al. Muscle architectural characteristics in women aged 20–79 years. Med Sci Sports Exerc. 2003;35:39–44. doi: 10.1249/01.MSS.0000043385.66520.09.
    1. Yoshiko A, Hioki M, Kanehira N, Shimaoka K, Koike T, Sakakibara H, et al. Three-dimensional comparison of intramuscular fat content between young and old adults. BMC Med Imaging. 2017;17:12. doi: 10.1186/s12880-017-0185-9.
    1. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13:146. doi: 10.1117/1.1631315.
    1. Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand. 2005;183:291–298. doi: 10.1111/j.1365-201X.2004.01404.x.
    1. Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact. 2013;13:320–328.
    1. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Front Physiol. 2012:1–19. 10.3389/fphys.2012.00260.
    1. Andersen JL. Muscle fibre type adaptation in the elderly human muscle. Scand J Med Sci Sports. 2003;13:40–47. doi: 10.1034/j.1600-0838.2003.00299.x.
    1. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, et al. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol. 2009;107:880–886. doi: 10.1152/japplphysiol.00291.2009.
    1. Couppé C, Svensson RB, Grosset JF, Kovanen V, Nielsen RH, Olsen MR, et al. Life-long endurance running is associated with reduced glycation and mechanical stress in connective tissue. Age (Omaha). 2014;36.
    1. Kubo K, Ishida Y, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T. Age-Related Differences in the Force Generation Capabilities and Tendon Extensibilities of Knee Extensors and Plantar Flexors in Men. J Gerontol Ser A Biol Sci Med Sci. 2007;62:1252–1258. doi: 10.1093/gerona/62.11.1252.
    1. Karamanidis K, Arampatzis A. Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle–tendon unit in relation to aging and running. J Biomech. 2006;39:406–417. doi: 10.1016/j.jbiomech.2004.12.017.
    1. Kubo K, Kanehisa H, Azuma K, Ishizu M, Kuno S-Y, Okada M, et al. Muscle Architectural Characteristics in Young and Elderly Men and Women. Int J Sports Med. 2003;24:125–130. doi: 10.1055/s-2003-38204.
    1. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050–1055. doi: 10.1152/japplphysiol.01186.2004.
    1. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol. 2012;113:1537–1544. doi: 10.1152/japplphysiol.00782.2012.
    1. Hasson CJ, Kent-Braun JA, Caldwell GE. Contractile and non-contractile tissue volume and distribution in ankle muscles of young and older adults. J Biomech. 2011;44:2299–2306. doi: 10.1016/j.jbiomech.2011.05.031.
    1. Aagaard P, Andersen JL, Dyhre P, Leffers AM, Wagner A, Peter Magnusson S, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J Physiol. 2001;534:613–623. doi: 10.1111/j.1469-7793.2001.t01-1-00613.x.
    1. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PWR. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol. 1995;78:2033–2038. doi: 10.1152/jappl.1995.78.6.2033.
    1. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. J Neurol Sci. 1973;18:111–129. doi: 10.1016/0022-510X(73)90023-3.
    1. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102:368–373. doi: 10.1152/japplphysiol.00789.2006.
    1. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55:1369–1381. doi: 10.1152/jn.1986.55.6.1369.
    1. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90:1579–1585. doi: 10.3945/ajcn.2009.28047.
    1. Bemben DA, Fetters NL, Bemben MG, Nabavi N, Koh ET. Musculoskeletal responses to high-and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc. 2000;32:1949–1957. doi: 10.1097/00005768-200011000-00020.
    1. Suetta C, Aagaard P, Rosted A, Jakobsen AK, Duus B, Kjaer M, et al. Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol. 2004;97:1954–1961. doi: 10.1152/japplphysiol.01307.2003.
    1. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise Training and Nutritional Supplementation for Physical Frailty in Very Elderly People. N Engl J Med. 1994;330:1769–1775. doi: 10.1056/NEJM199406233302501.
    1. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, et al. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One. 2014;9:17–21. doi: 10.1371/journal.pone.0109739.
    1. Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37:225–264 40p. doi: 10.2165/00007256-200737030-00004.
    1. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training. J Strength Cond Res. 2017;31:3508–3523. doi: 10.1519/JSC.0000000000002200.
    1. Van Roie E, Delecluse C, Coudyzer W, Boonen S, Bautmans I. Strength training at high versus low external resistance in older adults: Effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Gerontol. 2013;48:1351–1361. doi: 10.1016/j.exger.2013.08.010.
    1. Waligora AC, Johanson NA, Hirsch BE. Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee. Clin Orthop Relat Res. 2009;467:3297–3306. doi: 10.1007/s11999-009-1052-y.

Source: PubMed

3
Sottoscrivi