Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music

Clara E James, Eckart Altenmüller, Matthias Kliegel, Tillmann H C Krüger, Dimitri Van De Ville, Florian Worschech, Laura Abdili, Daniel S Scholz, Kristin Jünemann, Alexandra Hering, Frédéric Grouiller, Christopher Sinke, Damien Marie, Clara E James, Eckart Altenmüller, Matthias Kliegel, Tillmann H C Krüger, Dimitri Van De Ville, Florian Worschech, Laura Abdili, Daniel S Scholz, Kristin Jünemann, Alexandra Hering, Frédéric Grouiller, Christopher Sinke, Damien Marie

Abstract

Background: Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education.

Methods: We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling.

Discussion: We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity.

Trial registration: The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).

Keywords: Age-related cognitive decline; Diffusion tensor imaging (DTI); Executive functions; Magnetic resonance imaging (MRI); Multivariate data-driven analyses; Music induced brain and behavioral plasticity; One-year music practice; Randomized controlled trial; Voxel based Morphometry (VBM); Working memory.

Conflict of interest statement

The authors declare that there are no competing interests.

References

    1. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003;23(27):9240–9245. doi: 10.1523/JNEUROSCI.23-27-09240.2003.
    1. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron. 2012;76(3):486–502. doi: 10.1016/j.neuron.2012.10.011.
    1. James CE, Oechslin MS, Van De Ville D, Hauert CA, Descloux C, Lazeyras F. Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct. 2014;219(1):353–366. doi: 10.1007/s00429-013-0504-z.
    1. Oechslin MS, Descloux C, Croquelois A, Chanal J, Van De Ville D, Lazeyras F, et al. Hippocampal volume predicts fluid intelligence in musically trained people. Hippocampus. 2013;23(7):552–558. doi: 10.1002/hipo.22120.
    1. Oechslin MS, Van De Ville D, Lazeyras F, Hauert CA, James CE. Degree of musical expertise modulates higher order brain functioning. Cereb Cortex. 2013;23(9):2213–2224. doi: 10.1093/cercor/bhs206.
    1. Schulze K, Mueller K, Koelsch S. Neural correlates of strategy use during auditory working memory in musicians and non-musicians. Eur J Neurosci. 2011;33(1):189–196. doi: 10.1111/j.1460-9568.2010.07470.x.
    1. Brown S, Martinez MJ, Parsons LM. Music and language side by side in the brain: a PET study of the generation of melodies and sentences. Eur J Neurosci. 2006;23(10):2791–2803. doi: 10.1111/j.1460-9568.2006.04785.x.
    1. Francois C, Grau-Sanchez J, Duarte E, Rodriguez-Fornells A. Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation. Front Psychol. 2015;6:475. doi: 10.3389/fpsyg.2015.00475.
    1. Oechslin MS, Gschwind M, James CE. Tracking training-related plasticity by combining fMRI and DTI: the right hemisphere ventral stream mediates musical syntax processing. Cereb Cortex. 2018;28(4):1209–1218. doi: 10.1093/cercor/bhx033.
    1. Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, et al. The effects of musical training on structural brain development: a longitudinal study. Ann N Y Acad Sci. 2009;1169:182–186. doi: 10.1111/j.1749-6632.2009.04852.x.
    1. James CE, Oechslin MS, Michel CM, De Pretto M. Electrical neuroimaging of music processing reveals mid-latency changes with level of musical expertise. Front Neurosci. 2017;11(613):613. doi: 10.3389/fnins.2017.00613.
    1. James CE, Zuber S, Dupuis-Lozeron E, Abdili L, Gervaise D, Kliegel M. Formal string instrument training in a class setting enhances cognitive and sensorimotor development of primary school children. Front Neurosci. 2020;14:567. doi: 10.3389/fnins.2020.00567.
    1. Bugos JA, Perlstein WM, McCrae CS, Brophy TS, Bedenbaugh PH. Individualized piano instruction enhances executive functioning and working memory in older adults. Aging Ment Health. 2007;11(4):464–471. doi: 10.1080/13607860601086504.
    1. Seinfeld S, Figueroa H, Ortiz-Gil J, Sanchez-Vives MV. Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Front Psychol. 2013;4:810. doi: 10.3389/fpsyg.2013.00810.
    1. Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–2516. doi: 10.1056/NEJMoa022252.
    1. Dege F, Kerkovius K. The effects of drumming on working memory in older adults. Ann N Y Acad Sci. 2018. p. 242–50.
    1. Baltes PB, Baltes MM. Psychological perspectives on successful aging: the model of selective optimization with compensation. In: Baltes PB, Baltes MM, editors. Successful aging: perspectives from the behavioral sciences. New York: Cambridge University Press; 1990. pp. 1–34.
    1. Lindenberger U. Human cognitive aging: corriger la fortune? Science. 2014;346(6209):572–578. doi: 10.1126/science.1254403.
    1. Grady C. The cognitive neuroscience of ageing. Nat Rev Neurosci. 2012;13(7):491–505. doi: 10.1038/nrn3256.
    1. Reuter-Lorenz PA, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol Ser B Psychol Sci Soc Sci. 2010;65(4):405–415.
    1. Zinke K, Zeintl M, Rose NS, Putzmann J, Pydde A, Kliegel M. Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev Psychol. 2014;50(1):304–315. doi: 10.1037/a0032982.
    1. Zinke K, Zeintl M, Eschen A, Herzog C, Kliegel M. Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology. 2012;58(1):79–87. doi: 10.1159/000324240.
    1. Baltes PB, Reese HW, Lipsitt LP. Life-span developmental psychology. Annu Rev Psychol. 1980;31:65–110. doi: 10.1146/annurev.ps.31.020180.000433.
    1. Willis SL, Schaie KW. Cognitive training and plasticity: theoretical perspective and methodological consequences. Restor Neurol Neurosci. 2009;27(5):375–389.
    1. Li SC. Biocultural orchestration of developmental plasticity across levels: the interplay of biology and culture in shaping the mind and behavior across the life span. Psychol Bull. 2003;129(2):171–194. doi: 10.1037/0033-2909.129.2.171.
    1. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96. doi: 10.1038/nrn1323.
    1. Raz N, Yang YQ, Rodrigue KM, Kennedy KM, Lindenberger U, Ghisletta P. White matter deterioration in 15 months: latent growth curve models in healthy adults. Neurobiol Aging. 2012;33(2):429 e421–429 e425. doi: 10.1016/j.neurobiolaging.2010.11.018.
    1. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–15231. doi: 10.1523/JNEUROSCI.3252-09.2009.
    1. Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Mapp. 2013;34(11):2972–2985. doi: 10.1002/hbm.22119.
    1. Wen W, Zhu W, He Y, Kochan NA, Reppermund S, Slavin MJ, et al. Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J Neurosci. 2011;31(4):1204–1212. doi: 10.1523/JNEUROSCI.4085-10.2011.
    1. Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex. 2010;20(6):1432–1447. doi: 10.1093/cercor/bhp207.
    1. Zonneveld HI, Pruim RH, Bos D, Vrooman HA, Muetzel RL, Hofman A, et al. Patterns of functional connectivity in an aging population: the Rotterdam study. NeuroImage. 2019;189:432–444. doi: 10.1016/j.neuroimage.2019.01.041.
    1. Bergmann HC, Rijpkema M, Fernandez G, Kessels RP. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe. NeuroImage. 2012;63(2):989–997. doi: 10.1016/j.neuroimage.2012.03.047.
    1. James C, Morand S, Barcellona-Lehmann S, Michel CM, Schnider A. Neural transition from short- to long-term memory and the medial temporal lobe: a human evoked-potential study. Hippocampus. 2009;19(4):371–378. doi: 10.1002/hipo.20526.
    1. Reuben A, Brickman AM, Muraskin J, Steffener J, Stern Y. Hippocampal atrophy relates to fluid intelligence decline in the elderly. Journal of the International Neuropsychological Society : JINS. 2011;17(1):56–61. doi: 10.1017/S135561771000127X.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–3022. doi: 10.1073/pnas.1015950108.
    1. Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol. 2012;8(4):189–202. doi: 10.1038/nrneurol.2012.27.
    1. Woodard JL, Sugarman MA, Nielson KA, Smith JC, Seidenberg M, Durgerian S, et al. Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Curr Alzheimer Res. 2012;9(4):436–446. doi: 10.2174/156720512800492477.
    1. Groussard M, La Joie R, Rauchs G, Landeau B, Chetelat G, Viader F, Desgranges B, Eustache F, Platel H. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS One. 2010;5(10):1–8. 10.1371/journal.pone.0013225.
    1. Herdener M, Esposito F, di Salle F, Boller C, Hilti CC, Habermeyer B, et al. Musical training induces functional plasticity in human hippocampus. J Neurosci. 2010;30(4):1377–1384. doi: 10.1523/JNEUROSCI.4513-09.2010.
    1. James CE, Britz J, Vuilleumier P, Hauert CA, Michel CM. Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. NeuroImage. 2008;42(4):1597–1608. doi: 10.1016/j.neuroimage.2008.06.025.
    1. Green CS, Bavelier D. Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol Aging. 2008;23(4):692–701. doi: 10.1037/a0014345.
    1. Green CS, Strobach T, Schubert T. On methodological standards in training and transfer experiments. Psychol Res. 2014;78(6):756–72.
    1. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288(18):2271–2281. doi: 10.1001/jama.288.18.2271.
    1. Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen VA, et al. Effects of memory training on cortical thickness in the elderly. NeuroImage. 2010;52(4):1667–1676. doi: 10.1016/j.neuroimage.2010.05.041.
    1. Kirchhoff BA, Anderson BA, Barch DM, Jacoby LL. Cognitive and neural effects of semantic encoding strategy training in older adults. Cereb Cortex. 2012;22(4):788–799. doi: 10.1093/cercor/bhr129.
    1. James CE. Music and language processing share behavioral and cerebral features. Front Psychol. 2012;3:52. doi: 10.3389/fpsyg.2012.00052.
    1. Flaugnacco E, Lopez L, Terribili C, Montico M, Zoia S, Schon D. Music training increases phonological awareness and Reading skills in developmental dyslexia: a randomized control trial. PLoS One. 2015;10(9):e0138715. doi: 10.1371/journal.pone.0138715.
    1. Francois C, Schon D. Musical expertise boosts implicit learning of both musical and linguistic structures. Cereb Cortex. 2011;21(10):2357–2365. doi: 10.1093/cercor/bhr022.
    1. Turker S, Reiterer SM, Seither-Preisler A, Schneider P. "when music speaks": auditory cortex morphology as a neuroanatomical marker of language aptitude and musicality. Front Psychol. 2017;8:2096. doi: 10.3389/fpsyg.2017.02096.
    1. Seither-Preisler A, Parncutt R, Schneider P. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. J Neurosci. 2014;34(33):10937–10949. doi: 10.1523/JNEUROSCI.5315-13.2014.
    1. James CE, Michel CM, Britz J, Vuilleumier P, Hauert CA. Rhythm evokes action: early processing of metric deviances in expressive music by experts and laymen revealed by ERP source imaging. Hum Brain Mapp. 2012;33(12):2751–2767. doi: 10.1002/hbm.21397.
    1. Oechslin MS, Imfeld A, Loenneker T, Meyer M, Jancke L. The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front Hum Neurosci. 2009;3:76.
    1. Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci. 2002;5(7):688–694. doi: 10.1038/nn871.
    1. Sluming V, Brooks J, Howard M, Downes JJ, Roberts N. Broca's area supports enhanced visuospatial cognition in orchestral musicians. J Neurosci. 2007;27(14):3799–3806. doi: 10.1523/JNEUROSCI.0147-07.2007.
    1. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L. White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. NeuroImage. 2009;46(3):600–607. doi: 10.1016/j.neuroimage.2009.02.025.
    1. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8(9):1148–1150. doi: 10.1038/nn1516.
    1. Schulze K, Zysset S, Mueller K, Friederici AD, Koelsch S. Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Hum Brain Mapp. 2011;32(5):771–783. doi: 10.1002/hbm.21060.
    1. Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici AD, et al. Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. NeuroImage. 2006;31(4):1771–1782. doi: 10.1016/j.neuroimage.2006.02.028.
    1. Wan CY, Schlaug G. Music making as a tool for promoting brain plasticity across the life span. Neuroscientist. 2010;16(5):566–577. doi: 10.1177/1073858410377805.
    1. Strait DL, Kraus N. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise. Front Psychol. 2011;2:113.
    1. Balbag MA, Pedersen NL, Gatz M. Playing a musical instrument as a protective factor against dementia and cognitive impairment: a population-based twin study. Int J Alzheimers Dis. 2014;2014:836748.
    1. Hanna-Pladdy B, Gajewski B. Recent and past musical activity predicts cognitive aging variability: direct comparison with general lifestyle activities. Front Hum Neurosci. 2012;6:198. doi: 10.3389/fnhum.2012.00198.
    1. Hanna-Pladdy B, MacKay A. The relation between instrumental musical activity and cognitive aging. Neuropsychology. 2011;25(3):378–386. doi: 10.1037/a0021895.
    1. Altenmüller E, James CE: The impact of music interventions on motor rehabilitation following stroke in elderly. In: Music and the Aging Brain. edn.: Elsevier; 2020:407–432. 10.1016/B978-0-12-817422-7.00016-X.
    1. Grau-Sanchez J, Munte TF, Altenmuller E, Duarte E, Rodriguez-Fornells A. Potential benefits of music playing in stroke upper limb motor rehabilitation. Neurosci Biobehav Rev. 2020;112:585–599. doi: 10.1016/j.neubiorev.2020.02.027.
    1. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A, Roberts N. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage. 2002;17(3):1613–1622. doi: 10.1006/nimg.2002.1288.
    1. Groussard M, Viader F, Landeau B, Desgranges B, Eustache F, Platel H. The effects of musical practice on structural plasticity: the dynamics of grey matter changes. Brain Cogn. 2014;90:174–180. doi: 10.1016/j.bandc.2014.06.013.
    1. Gartner H, Minnerop M, Pieperhoff P, Schleicher A, Zilles K, Altenmuller E, et al. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Front Psychol. 2013;4:636. doi: 10.3389/fpsyg.2013.00636.
    1. Klimova B, Valis M, Kuca K. Cognitive decline in normal aging and its prevention: a review on non-pharmacological lifestyle strategies. Clin Interv Aging. 2017;12:903–910. doi: 10.2147/CIA.S132963.
    1. White-Schwoch T, Woodruff Carr K, Anderson S, Strait DL, Kraus N. Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. J Neurosci. 2013;33(45):17667–17674. doi: 10.1523/JNEUROSCI.2560-13.2013.
    1. Chan AS, Ho YC, Cheung MC. Music training improves verbal memory. Nature. 1998;396(6707):128. doi: 10.1038/24075.
    1. Bialystok E, Depape AM. Musical expertise, bilingualism, and executive functioning. J Exp Psychol Hum Percept Perform. 2009;35(2):565–574. doi: 10.1037/a0012735.
    1. Zuk J, Benjamin C, Kenyon A, Gaab N. Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS One. 2014;9(6):e99868. doi: 10.1371/journal.pone.0099868.
    1. Meyer J, Oguz PG, Moore KS. Superior fluid cognition in trained musicians. Psychol Music. 2018;0305735618808089.
    1. Parbery-Clark A, Skoe E, Kraus N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci. 2009;29(45):14100–14107. doi: 10.1523/JNEUROSCI.3256-09.2009.
    1. Slater J, Skoe E, Strait DL, O'Connell S, Thompson E, Kraus N. Music training improves speech-in-noise perception: longitudinal evidence from a community-based music program. Behav Brain Res. 2015;291:244–252. doi: 10.1016/j.bbr.2015.05.026.
    1. Bugos JA. The effects of bimanual coordination in music interventions on executive functions in aging adults. Front Integr Neurosci. 2019;13:68. doi: 10.3389/fnint.2019.00068.
    1. Boyke J, Driemeyer J, Gaser C, Buchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. 2008;28(28):7031–7035. doi: 10.1523/JNEUROSCI.0742-08.2008.
    1. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97–101. doi: 10.1038/nature12486.
    1. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–1170. doi: 10.1093/gerona/61.11.1166.
    1. Woollett K, Maguire EA. Acquiring "the knowledge" of London's layout drives structural brain changes. Current Biol. 2011;21(24):2109–2114. doi: 10.1016/j.cub.2011.11.018.
    1. Teki S, Kumar S, von Kriegstein K, Stewart L, Lyness CR, Moore BC, et al. Navigating the auditory scene: an expert role for the hippocampus. J Neurosci. 2012;32(35):12251–12257. doi: 10.1523/JNEUROSCI.0082-12.2012.
    1. Stewart L, Henson R, Kampe K, Walsh V, Turner R, Frith U. Brain changes after learning to read and play music. NeuroImage. 2003;20(1):71–83. doi: 10.1016/S1053-8119(03)00248-9.
    1. Stewart L. A neurocognitive approach to music reading. Ann N Y Acad Sci. 2005;1060:377–386. doi: 10.1196/annals.1360.032.
    1. Bangert M, Altenmuller EO. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 2003;4:26. doi: 10.1186/1471-2202-4-26.
    1. Lappe C, Herholz SC, Trainor LJ, Pantev C. Cortical plasticity induced by short-term unimodal and multimodal musical training. J Neurosci. 2008;28(39):9632–9639. doi: 10.1523/JNEUROSCI.2254-08.2008.
    1. Lahav A, Saltzman E, Schlaug G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci. 2007;27(2):308–314. doi: 10.1523/JNEUROSCI.4822-06.2007.
    1. Greenwood PM, Parasuraman R. Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci. 2010;2:150. doi: 10.3389/fnagi.2010.00150.
    1. Park DC, Lodi-Smith J, Drew L, Haber S, Hebrank A, Bischof GN, et al. The impact of sustained engagement on cognitive function in older adults: the synapse project. Psychol Sci. 2014;25(1):103–112. doi: 10.1177/0956797613499592.
    1. de Mestral C, Marques-Vidal P, Gaspoz JM, Theler JM, Guessous I. Independent association between socioeconomic indicators and macro- and micro-nutrient intake in Switzerland. PLoS One. 2017;12(4):e0174578. doi: 10.1371/journal.pone.0174578.
    1. Mullensiefen D, Gingras B, Musil J, Stewart L. The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS One. 2014;9(2):e89642. doi: 10.1371/journal.pone.0089642.
    1. Amireault S, Godin G. The Godin-Shephard leisure-time physical activity questionnaire: validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Percept Mot Skills. 2015;120(2):604–622. doi: 10.2466/03.27.PMS.120v19x7.
    1. Sheikh JI, Yesavage JA. Geriatric depression scale (GDS): recent evidence and development of a shorter version. Clinical Gerontologist: The Journal of Aging and Mental Health. 1986;5(1–2):165–173.
    1. Breitling LP, Wolf M, Muller H, Raum E, Kliegel M, Brenner H. Large-scale application of a telephone-based test of cognitive functioning in older adults. Dement Geriatr Cogn Disord. 2010;30(4):309–316. doi: 10.1159/000319896.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Ihle A, Gouveia ER, Gouveia BR, Kliegel M. The cognitive telephone screening instrument (COGTEL): a brief, reliable, and valid tool for capturing Interindividual differences in cognitive functioning in epidemiological and aging studies. Dement Geriatr Cogn Dis Extra. 2017;7(3):339–345. doi: 10.1159/000479680.
    1. Wechsler D. Wechsler adult intelligence scale: fourth edition (WAIS-IV). [assessment instrument] San Antonio: Pearson; 2011.
    1. Zuber S, Kliegel M, Ihle A. An individual difference perspective on focal versus nonfocal prospective memory. Mem Cognit. 2016;44(8):1192–1203. doi: 10.3758/s13421-016-0628-5.
    1. Enge S, Behnke A, Fleischhauer M, Kuttler L, Kliegel M, Strobel A. No evidence for true training and transfer effects after inhibitory control training in young healthy adults. J Exp Psychol Learn Mem Cogn. 2014;40(4):987–1001. doi: 10.1037/a0036165.
    1. Bean J. Rey auditory verbal learning test, Rey AVLT. Encyclopedia of Clinical Neuropsychology. 2011:2174–75.
    1. Rey A. L’examen clinique en psychologie [the clinical psychological examination] Paris: Presses Universitaires de France; 1964.
    1. Helmstaedter C, Lendt M, Lux S. VMLT Verbaler Lern und Merkfähigkeitstest. Göttingen: Beltz Test GmbH; 2001.
    1. Kollmeier B, Warzybok A, Hochmuth S, Zokoll MA, Uslar V, Brand T, et al. The multilingual matrix test: principles, applications, and comparison across languages: a review. Int J Audiol. 2015;54(sup2):3–16. doi: 10.3109/14992027.2015.1020971.
    1. Tiffin J, Asher EJ. The Purdue pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32:234–247. doi: 10.1037/h0061266.
    1. Jabusch HC, Vauth H, Altenmuller E. Quantification of focal dystonia in pianists using scale analysis. Mov Disord. 2004;19(2):171–180. doi: 10.1002/mds.10671.
    1. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–162. doi: 10.1016/0895-4356(93)90053-4.
    1. Marques JP, Gruetter R. New developments and applications of the MP2RAGE sequence--focusing the contrast and high spatial resolution R1 mapping. PLoS One. 2013;8(7):e69294. doi: 10.1371/journal.pone.0069294.
    1. Malinovitch T, Albouy P, Ahissar M, Zatorre RJ. Practicing an auditory working memory task recruits lower-level auditory areas in a task-specific manner. In: CogSci: 20017;3773.
    1. Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni JM, Schluep M, et al. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage. 2013;83:937–950. doi: 10.1016/j.neuroimage.2013.07.019.
    1. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junque C, Sole-Padulles C, et al. Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging. 2012;33(1):61–74. doi: 10.1016/j.neurobiolaging.2010.02.004.
    1. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. 2016;281(2):337–356. doi: 10.1148/radiol.2016150789.
    1. Verhaeghen P, Marcoen A, Goossens L. Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychol Aging. 1992;7(2):242–251. doi: 10.1037/0882-7974.7.2.242.
    1. Isaacs KL, Barr WB, Nelson PK, Devinsky O. Degree of handedness and cerebral dominance. Neurology. 2006;66(12):1855–1858. doi: 10.1212/01.wnl.0000219623.28769.74.
    1. Stonnington CM, Tan G, Kloppel S, Chu C, Draganski B, Jack CR, Jr, et al. Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease. NeuroImage. 2008;39(3):1180–1185. doi: 10.1016/j.neuroimage.2007.09.066.
    1. Nucci M, Mapelli D, Mondini S. Cognitive reserve index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clin Exp Res. 2012;24(3):218–226.
    1. Josse J, Husson F, Pagès J. Gestion des données manquantes en analyse en composantes principales. J de la Société Française de Statistique. 2009;150(2):28–51.
    1. Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N, Lepage C, Rioux P, Rousseau M-E, Sherif T, Deelman E, et al. Reproducibility of neuroimaging analyses across operating systems. Front Neuroinforma. 2015;9(12):1–14. 10.3389/fninf.2015.00012.
    1. Calhoun VD, Adali T, Giuliani NR, Pekar JJ, Kiehl KA, Pearlson GD. Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Hum Brain Mapp. 2006;27(1):47–62. doi: 10.1002/hbm.20166.
    1. Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson GD, et al. Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA + jICA. Front Hum Neurosci. 2013;7:235. doi: 10.3389/fnhum.2013.00235.
    1. Grady C, Charlton RA, Yu H, Alain C. Age differences in fMRI adaptation for sound identity and location. Front Hum Neurosci. 2011;5:1–12. 10.3389/fnhum.2011.00024.
    1. Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage. 2011;56(2):455–475. doi: 10.1016/j.neuroimage.2010.07.034.
    1. Groves AR, Beckmann CF, Smith SM, Woolrich MW. Linked independent component analysis for multimodal data fusion. NeuroImage. 2011;54(3):2198–2217. doi: 10.1016/j.neuroimage.2010.09.073.
    1. Levin-Schwartz Y, Calhoun VD, Adali T. Information sciences and systems (CISS), 2014 48th annual conference on: 19–21 march 2014 2014. 2014. Data-driven fusion of EEG, functional and structural MRI: a comparison of two models; pp. 1–6.
    1. Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage. 2017;160:41–54. doi: 10.1016/j.neuroimage.2016.12.061.
    1. Salami A, Eriksson J, Nyberg L. Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. J Neurosci. 2012;32(31):10749–10757. doi: 10.1523/JNEUROSCI.0278-12.2012.
    1. Haller S, Lovblad KO, Giannakopoulos P, Van De Ville D. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends. Brain Topogr. 2014;27(3):329–337. doi: 10.1007/s10548-014-0360-z.
    1. Richiardi J, Achard S, Bunke H, Ville DVD. Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Process Mag. 2013;30(3):58–70. doi: 10.1109/MSP.2012.2233865.
    1. Bernal-Rusiel JL, Reuter M, Greve DN, Fischl B, Sabuncu MR. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data. NeuroImage. 2013;81:358–370. doi: 10.1016/j.neuroimage.2013.05.049.
    1. Thompson WK, Hallmayer J, O'Hara R. Design considerations for characterizing psychiatric trajectories across the lifespan: application to effects of APOE-epsilon4 on cerebral cortical thickness in Alzheimer's disease. Am J Psychiatry. 2011;168(9):894–903. doi: 10.1176/appi.ajp.2011.10111690.
    1. Steen RG, Hamer RM, Lieberman JA. Measuring brain volume by MR imaging: impact of measurement precision and natural variation on sample size requirements. AJNR Am J Neuroradiol. 2007;28(6):1119–1125. doi: 10.3174/ajnr.A0537.
    1. Heiervang E, Behrens TE, Mackay CE, Robson MD, Johansen-Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage. 2006;33(3):867–877. doi: 10.1016/j.neuroimage.2006.07.037.
    1. Hamer M, Batty GD. Association of body mass index and waist-to-hip ratio with brain structure: UK biobank study. Neurology. 2019;92(6):e594–600.

Source: PubMed

3
Sottoscrivi